×

zbMATH — the first resource for mathematics

Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups. (English) Zbl 0524.43008

MSC:
43A85 Harmonic analysis on homogeneous spaces
22E30 Analysis on real and complex Lie groups
57R70 Critical points and critical submanifolds in differential topology
58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces
14M15 Grassmannians, Schubert varieties, flag manifolds
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] T.F. Banchoff : Computer animation and the geometry of surfaces in 3- and 4-space . Proc. Int. Congr. of Math., Helsinki, 1978, pp. 1005-1013. Helsinki: Academia Scientiarum Fennica 1980. · Zbl 0443.53002
[2] F.A. Berezin and I.M. Gel’Fand : Some remarks on the theory of spherical functions on symmetrical Riemannian manifolds . Trudy Moskov. Mat. Obšč 5 (1956 ) 311-351.English transl.: Amer. Math. Soc. Translations (2) 21 (1962) 193 -238. · Zbl 0195.42302 · doi:10.1090/trans2/021/07
[3] I.N. Bernstein , I.M. Gel’Fand and S.I. Gel’Fand : Schubert cells and cohomology of the spaces G/P . Uspekhi Mat. Nauk. 28 (1973) 3-26.English transl.: Russ. Math. Surveys 28 (1973) 1-26. · Zbl 0289.57024 · doi:10.1070/rm1973v028n03ABEH001557
[4] A. Borel : Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts . Ann. of Math. 57 (1953) 115-207. · Zbl 0052.40001 · doi:10.2307/1969728
[5] A. Borel : Kählerian coset spaces of semi-simple Lie groups . Proc. Nat. Acad. Sci., U.S.A. 40 (1954) 1147-1151. · Zbl 0058.16002 · doi:10.1073/pnas.40.12.1147
[6] A. Borel : Linear Algebraic Groups . New York: Benjamin 1969. · Zbl 0186.33201
[7] A. Borel and J. Tits : Groupes réductifs . Inst. Hautes Études Sci. Publ. Math. 27 (1965) 55-151. · Zbl 0145.17402 · doi:10.1007/BF02684375 · numdam:PMIHES_1965__27__55_0 · eudml:103858
[8] A. Borel and J. Tits : Compléments à l’article ”Groupes réductifs” . Inst. Hautes Études Sci. Publ. Math. 41 (1972) 253-276. · Zbl 0254.14018 · doi:10.1007/BF02715545 · numdam:PMIHES_1972__41__253_0 · eudml:103917
[9] R. Bott : On torsion in Lie groups . Proc. Nat. Acad. Sci., U.S.A. 40 (1954) 586-588. · Zbl 0057.02201 · doi:10.1073/pnas.40.7.586
[10] R. Bott : On the iteration of closed geodesics and the Sturm intersection theory . Comm. Pure Appl. Math. 9 (1956) 171-206. · Zbl 0074.17202 · doi:10.1002/cpa.3160090204
[11] R. Bott and H. Samelson : Applications of the theory of Morse to symmetric spaces . Amer. J. Math. 80 (1958) 964-1029. · Zbl 0101.39702 · doi:10.2307/2372843
[12] T.E. Cecil and P.J. Ryan : Tight spherical embeddings . In: Global Differential Geometry and Global Analysis . Berlin, 1979, pp. 94-104.Lecture Notes in Mathematics 838. Berlin: Springer-Verlag 1981. · Zbl 0437.53043
[13] J. Chazarain : Formule de Poisson pour les variétés riemanniennes . Invent. Math. 24 (1974) 65-82. · Zbl 0281.35028 · doi:10.1007/BF01418788 · eudml:142270
[14] L. Cohn : Analytic Theory of the Harish-Chandra C-function . Lecture Notes in Mathematics 429. Berlin: Springer-Verlag 1974. · Zbl 0342.33026
[15] Y. Colin De Verdière : Spectre du Laplacien et longueurs des géodésiques périodiques, II . Comp. Math. 27 (1973) 159-184. · Zbl 0281.53036 · numdam:CM_1973__27_2_159_0 · eudml:89186
[16] M. Demazure : Désingularisation des variétés de Schubert généralisées . Ann. Sci. École Norm. Sup. (4) 7 (1974) 53-88. · Zbl 0312.14009 · doi:10.24033/asens.1261 · numdam:ASENS_1974_4_7_1_53_0 · eudml:81930
[17] V.V. Deodhar : On Bruhat ordering and weight-lattice ordering for a Weyl group . Nederl. Akad. Wetensch. Proc. Ser. A81 = Indag. Math. 40 (1978) 423-435. · Zbl 0425.20041
[18] J. Dieudonné : Foundations of Modem Analysis . New York: Academic Press 1960. · Zbl 0100.04201
[19] J.J. Duistermaat : Oscillatory integrals, Lagrange immersions and unfolding of singularities . Comm. Pure Appl. Math. 27 (1974) 207-281. · Zbl 0285.35010 · doi:10.1002/cpa.3160270205
[20] J.J. Duistermaat , J.A.C. Kolk and V.S. Varadarajan : Spectra of compact locally symmetric manifolds of negative curvature . Invent. Math. 52 (1979) 27-93. · Zbl 0434.58019 · doi:10.1007/BF01389856 · eudml:142640
[21] C. Ehresmann : Sur la topologie de certaines variétés algébriques réelles . J. Math. Pures Appl. (9) 16 (1937) 69-100. · JFM 63.0557.01|0016.07403
[22] A. Erdélyi : Asymptotic Expansions . New York: Dover 1956. · Zbl 0070.29002
[23] R. Gangolli : On the Plancherel formula and the Paley-Wiener theorem for spherical functions on semisimple Lie groups . Ann. of Math. 93 (1971) 150-165. · Zbl 0232.43007 · doi:10.2307/1970758
[24] I.M. Gelfand and M.A. Neumark : Unitäre Darstellungen der klassischen Gruppen . Berlin: Akademie-Verlag 1957. · Zbl 0077.03405
[25] S.G. Gindikin : Unitary representations of groups of automorphisms of Riemann symmetric spaces of null curvature . Funkcional Anal. i Priložen 1: 1 (1967) 32-37.English transl.: Functional Anal. Appl. 1 (1967) 28-32. · Zbl 0184.25304
[26] V. Guillemin and A. Pollack : Differential Topology . Englewood Cliffs: Prentice-Hall 1974. · Zbl 0361.57001
[27] H.C. Hansen : On cycles in flag manifolds . Math. Scand. 33 (1973) 269-274. · Zbl 0301.14019 · doi:10.7146/math.scand.a-11489 · eudml:166330
[28] Harish-Chandra : Spherical functions on a semisimple Lie group , I. Amer. J. Math. 80 (1958) 241-310. · Zbl 0093.12801 · doi:10.2307/2372786
[29] Harish-Chandra : Spherical functions on a semisimple Lie group , II. Amer. J. Math. 80 (1958) 553-613. · Zbl 0093.12801 · doi:10.2307/2372786
[30] Harish-Chandra : Some results on differential equations and their applications . Proc. Nat. Acad. Sci., U.S.A. 45 (1959) 1763-1764. · Zbl 0161.33803 · doi:10.1073/pnas.45.12.1763
[31] Harish-Chandra : Harmonic analysis on real reductive groups, I. The theory of the constant term . J. of Functional Analysis 19 (1975) 104-204. · Zbl 0315.43002 · doi:10.1016/0022-1236(75)90034-8
[32] G.J. Heckman : Projections of Orbits and Asymptotic Behaviour of Multiplicities for Compact Lie Groups . Thesis, Rijksuniversiteit Leiden (1980). · Zbl 0497.22006 · doi:10.1007/BF01393821 · eudml:142915
[33] S. Helgason : Differential Geometry and Symmetric Spaces . New York: Academic Press 1962. · Zbl 0111.18101
[34] R. Herb : Discrete series characters and Fourier inversion on semisimple real Lie groups . Preprint, University of Maryland (1980). To appear T.A.M.S. · Zbl 0516.22007 · doi:10.2307/1999354
[35] R. Hermann : Geometric aspects of potential theory in symmetric spaces. III . Math. Ann. 153 (1964) 384-394. · Zbl 0119.09001 · doi:10.1007/BF01360674 · eudml:161140
[36] L. Hörmander : Fourier integral operators , I. Acta Math. 127 (1971) 79-183. · Zbl 0212.46601 · doi:10.1007/BF02392052
[37] G.A. Hunt : A theorem of Élie Cartan . Proc. Amer. Math. Soc. 7 (1956) 307-308. · Zbl 0073.01602 · doi:10.2307/2033191
[38] A.A. Kirillov : Unitary representations of nilpotent Lie groups . Uspekhi Mat. Nauk. 17 (1962) 57-110.English transl.: Russ. Math. Surveys 17 (1962) 53-104. · Zbl 0106.25001 · doi:10.1070/rm1962v017n04ABEH004118
[39] S.L. Kleiman : Problem 15. Rigorous foundation of Schubert’s enumerative calculus . In: Mathematical Developments arising from Hilbert Problems. Proc. Sympos. Pure Math., vol. 28, pp. 445-482. Providence: Amer. Math. Soc. 1976. · Zbl 0336.14001
[40] B. Kostant : Lie algebra cohomology and the generalized Borel-Weil theorem . Ann. of Math. 74 (1961) 329-387. · Zbl 0134.03501 · doi:10.2307/1970237
[41] B. Kostant : Lie algebra cohomology and generalized Schubert cells . Ann. of Math. 77 (1963) 72-144. · Zbl 0134.03503 · doi:10.2307/1970202
[42] B. Kostant : On convexity, the Weyl group and the Iwasawa decomposition . Ann. Sci. École Norm. Sup. (4) 6 (1973) 413-455. · Zbl 0293.22019 · doi:10.24033/asens.1254 · numdam:ASENS_1973_4_6_4_413_0 · eudml:81923
[43] N.H. Kuiper : Minimal total absolute curvature for immersions . Invent. Math. 10 (1970) 209-238. · Zbl 0187.18902 · doi:10.1007/BF01403250 · eudml:142032
[44] S. Lefschetz : Intersections and transformations of complexes and manifolds . Trans. Amer. Math. Soc. 28 (1926) 1-49. · JFM 52.0572.02
[45] S. Łojasiewicz : Triangulation of semi-analytic sets . Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964) 449-474. · Zbl 0128.17101 · numdam:ASNSP_1964_3_18_4_449_0 · eudml:83333
[46] J. Milnor : Morse Theory. Ann. of Math. Studies N^\circ 51 . Princeton: Princeton University Press 1963. · Zbl 0108.10401 · doi:10.1515/9781400881802
[47] J. Milnor : Lectures on the h-Cobordism Theorem. Notes by L. Siebenmann and J. Sondow . Princeton: Princeton University Press 1965. · Zbl 0161.20302
[48] D. Mumford : Introduction to Algebraic Geometry, preliminary version of Chapters I-III . Cambridge: Harvard Univ. Math. Dept. 1966.
[49] R.W. Richardson, Jr. : Conjugacy classes in Lie algebras and algebraic groups . Ann. of Math. 86 (1967) 1-15. · Zbl 0153.04501 · doi:10.2307/1970359
[50] P.J. Sally , JR and G. Warner : The Fourier transform on semisimple Lie groups of real rank one . Acta Math. 131 (1973) 1-26. · Zbl 0305.43007 · doi:10.1007/BF02392034
[51] H. Schubert : Kalkül der Abzählenden Geometrie . Leipzig: Teubner 1879. · Zbl 0417.51008
[52] J.T. Schwartz : Differential Geometry and Topology . New York: Gordon and Breach 1968. · Zbl 0187.45006
[53] Séminaire C. Chevalley : Classification des Groupes de Lie Algébriques , vols. 1 en 2. Paris: Secrétariat Mathématique 1958. · Zbl 0092.26301 · www.numdam.org · www.numdam.org
[54] J.-P. Serre : Représentations linéaires et espaces homogènes kählériennes des groupes de Lie compacts. Séminaire Bourbaki, 1953/1954. Exposé 100 . Paris: Secrétariat Mathématique. · Zbl 0121.16203 · numdam:SB_1951-1954__2__447_0 · eudml:109487
[55] T.A. Springer : The unipotent variety of a semisimple group . In: Algebraic Geometry . Papers presented at the Bombay Colloquium, 1968, pp. 373-391. London: Oxford University Press 1969. · Zbl 0195.50803
[56] R. Steinberg : Conjugacy Classes in Algebraic Groups . Lecture Notes in Mathematics 366. Berlin: Springer-Verlag 1974. · Zbl 0281.20037
[57] D. Sullivan : Combinatorial invariants of analytic spaces . In: Proceedings Liverpool Singularities - Symposium I, 1970, pp. 165-168. Lecture Notes in Mathematics 192. Berlin: Springer-Verlag 1971. · Zbl 0227.32005
[58] M. Takeuchi : Cell decompositions and Morse equalities on certain symmetric spaces . J. Fac. of Sci. Univ. of Tokyo 12 (1965) 81-192. · Zbl 0144.22804
[59] M. Takeuchi and S. Kobayashi : Minimal imbeddings of R-spaces . J. Differential Geometry 2 (1968) 203-215. · Zbl 0165.24901 · doi:10.4310/jdg/1214428257
[60] R. Thom : Sur une partition en cellules associée à une fonction sur une variété . C.R. Acad. Sci. Paris Sér. A-B 228 (1949) 973-975. · Zbl 0034.20802
[61] J. Tits : Sur les R-espaces . C.R. Acad. Sci. Paris Sér. A-B 239 (1954) 850-852. · Zbl 0058.36503
[62] J. Tits : Sur certaines classes d’espaces homogènes de groupes de Lie . Acad. Roy. Belg. Cl. Sci. Mem. Coll. 29 (1955), no. 3. · Zbl 0067.12301
[63] J. Tits : Espaces homogènes complexes compacts . Comment. Math. Helv. 37 (1962) 111-120. · Zbl 0108.36302 · doi:10.1007/BF02566965 · eudml:139249
[64] V.S. Varadarajan : Lie groups, Lie Algebras, and Their Representations . Englewood Cliffs: Prentice-Hall 1974. · Zbl 0371.22001
[65] V.S. Varadarajan : Harmonic Analysis on Real Reductive Groups . Lecture Notes in Mathematics 576. Berlin: Springer-Verlag 1977. · Zbl 0354.43001 · doi:10.1007/BFb0097814
[66] B.L. Van Der Waerden : Topologische Begründung des Kalküls der abzählenden Geometrie . Math. Ann. 102 (1930) 337-362. · JFM 55.0992.01
[67] B.L. Van Der Waerden : Einführung in die Algebraische Geometrie . Berlin: Springer 1939. · JFM 65.1393.01|0021.25001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.