×

zbMATH — the first resource for mathematics

Scattering theory for quantum dynamical semigroups. II. (English) Zbl 0524.47006

MSC:
47A40 Scattering theory of linear operators
81U20 \(S\)-matrix theory, etc. in quantum theory
47D03 Groups and semigroups of linear operators
47L10 Algebras of operators on Banach spaces and other topological linear spaces
82B10 Quantum equilibrium statistical mechanics (general)
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] A. Barchielli , L. Lanz , Nuovo Cimento , t. 44 B, 1978 , p. 241 - 264 ; A. Barchielli , Nuovo Cimento , t. 47 A, 1978 , p. 187 - 199 . MR 489508
[2] E.B. Davies , Ann. Inst. Henri Poincaré , t. XXXII A , 1980 , p. 361 - 375 . Numdam | MR 594635 | Zbl 0445.47006 · Zbl 0445.47006
[3] R. Alicki , Ann. Inst. Henri Poincaré , t. XXXV A , 1981 , p. 97 - 103 . Numdam | MR 637237 | Zbl 0474.47005 · Zbl 0474.47005
[4] R. Alicki , Quantum Dynamical Semigroups and Dissipative Collisions of Heavy Ions , Z. Phys. , t. A 307 , 1982 , p. 279 - 285 . MR 675257
[5] E.B. Davies , Quantum Theory of Open Systems . Academic Press , 1976 . MR 489429 | Zbl 0388.46044 · Zbl 0388.46044
[6] V. Gorini , A. Frigerio , M. Verri , A. Kossakowski , E.C.G. Sudarshan , Rep. Math. Phys. , t. 13 , 1978 , p. 149 - 173 . MR 507939 | Zbl 0392.47017 · Zbl 0392.47017
[7] E.B. Davies , Rep. Math. Phys. , t. 11 , 1977 , p. 169 - 188 . MR 503331 | Zbl 0372.47020 · Zbl 0372.47020
[8] Ph.A. Martin , Nuovo Cimento , t. 30 B, 1975 , p. 217 - 238 . MR 468891
[9] E.B. Davies , Commun . math. Phys. , t. 71 , 1980 , p. 277 - 288 . Article | MR 565282 | Zbl 0428.47006 · Zbl 0428.47006
[10] E.B. Davies , Rep. Math. Phys. , t. 17 , 1980 , p. 249 - 255 . MR 630259 | Zbl 0493.47021 · Zbl 0493.47021
[11] T. Kato , Perturbation Theory for Linear Operators , Springer , 1966 . MR 407617 | Zbl 0148.12601 · Zbl 0148.12601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.