×

zbMATH — the first resource for mathematics

Déformations infinitésimales des espaces riemanniens localement symétriques. II: La conjecture infinitésimale de Blaschke pour les espaces projectifs complexes. (Infinitesimal déformations of locally symmetric Riemannian spaces. II: The infinitesimal conjecture of Blaschke for complex projective spaces). (French) Zbl 0524.53044
Ann. Inst. Fourier 34, No. 2, 191-226 (1984); erratum ibid. 36, No. 1 (1986).

MSC:
53C55 Global differential geometry of Hermitian and Kählerian manifolds
53C35 Differential geometry of symmetric spaces
Citations:
Zbl 0517.53046
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] M. BERGER, P. GAUDUCHON et E. MAZET, Le spectre d’une variété riemannienne, Lecture Notes in Mathematics, n° 194, Springer-Verlag, Berlin, Heidelberg, New York, 1971. · Zbl 0223.53034
[2] A. BESSE, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik, n° 93, Springer-Verlag, Berlin, Heidelberg, New York, 1978. · Zbl 0387.53010
[3] H. BOERNER, Representations of groups, North-Holland, Amsterdam, 1963.
[4] J. GASQUI et H. GOLDSCHMIDT, Déformations infinitésimales des espaces riemanniens localement symétriques. I, Advances in Math., 48 (1983), 205-285. · Zbl 0517.53046
[5] J. GASQUI et H. GOLDSCHMIDT, Déformations infinitésimales des structures conformes plates, Progress in Math., Birkäuser (à paraître). · Zbl 0585.53001
[6] S. HELGASON, Differential geometry and symmetric spaces, Academic Press, New York, London, 1962. · Zbl 0111.18101
[7] R. MICHEL, Problèmes d’analyse géométrique liés à la conjecture de Blaschke, Bull. Soc. Math. France, 101 (1973), 17-69. · Zbl 0265.53041
[8] J. MORROW et K. KODAIRA, Complex manifolds, Holt, Rinehart and Winston, New York, 1971. · Zbl 0325.32001
[9] C. TSUKAMOTO, Infinitesimal Blaschke conjectures on projective spaces, Ann. Scient. Ec. Norm. Sup., (4) 14 (1981), 339-356. · Zbl 0481.53041
[10] N. WALLACH, Harmonic analysis on homogeneous spaces, Marcel Dekker, New York, 1973. · Zbl 0265.22022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.