×

A maximum likelihood method for fitting the wandering vector model. (English) Zbl 0524.62112


MSC:

62P15 Applications of statistics to psychology
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Akaike, H. On entropy maximization principle. In P. R. Krishnaiah (Ed.),Applications of statistics. Amsterdam: North-Holland, 1977, 27–41.
[2] Amemiya, T. The maximum likelihood, the minimum chi-square and the nonlinear weighted least-squares method in the general qualitative response model.Journal of the American Statistical Association, 1976,71, 247–251. · Zbl 0341.62062
[3] Bechtel, G. G.Multidimensional preference scaling. The Hague: Mouton, 1976.
[4] Bock, R. D., & Jones, L. V.The measurement of prediction of judgment and choice. San Francisco: Holden-Day, 1968.
[5] Carroll, J. D. Individual differences and multidimensional scaling. In R. N. Shepard, A. K. Romney, & S. B. Nerlove (Eds.),Multidimensional scaling: Theory and Applications in the behavioral sciences (Vol. 1). New York: Seminar Press, 1972, 105–155.
[6] Carroll, J. D. Models and methods for multidimensional analysis of preferential choice (or other dominance) data. In E. D. Lantermann & H. Feger (Eds.),Similarity and choice. Bern: Huber, 1980, 234–289.
[7] Coombs, C. H.A theory of data. New York: Wiley, 1964.
[8] De Soete, G. On the relation between two generalized cases of Thurstone’s Law of Comparative Judgment.Mathématiques et Sciences humaines, 1983,21, 47–57. · Zbl 0511.90006
[9] Halff, H. M. Choice theories for differentially comparable alternatives.Journal of Mathematical Psychology, 1976,14, 244–246. · Zbl 0356.92023
[10] Heiser, W., & De Leeuw, J. Multidimensional mapping of preference data.Mathématiques et Sciences humaines. 1981,19, 39–36.
[11] Jennrich, R. I., & Moore, R. H. Maximum likelihood estimation by means of nonlinear least squares.Proceedings of the American Statistical Association–Statistical Computing Section, 1975, 57–65.
[12] Jones, L. V., & Jeffrey, T. E. A quantitative analysis of expressed preferences for compensation plans.Journal of Applied Psychology, 1964,48, 201–210.
[13] Kruskal, J. B. Factor analysis and principal components. I. Bilinear models. In W. H. Kruskal & J. M. Tanur (Eds.),International encyclopedia of statistics. (Vol. 1). New York: The Free Press, 1978, 307–330.
[14] McFadden, D. Quantal choice analysis: a survey,Annals of Economic and Social Measurement, 1976,5, 363–390.
[15] Ramsay, J. O. Maximum likelihood estimation in multidimensional scaling.Psychometrika, 1977,42, 241–266. · Zbl 0362.92019
[16] Ramsay, J. O. The joint analysis of direct ratings, pairwise preferences, and dissimilarities.Psychometrika, 1980,45, 149–165. · Zbl 0434.62082
[17] Roskam, E. E., & Lingoes, J. C. MINISSA-I: Fortran IV(G) program for the smallest space analysis of square symmetric matrices.Behavioral Science, 1970,15, 204–205.
[18] Scheffé, H. An analysis of variance for paired comparisons.Journal of the American Statistical Association, 1952,47, 381–400. · Zbl 0049.09907
[19] Schönemann, P. H., & Tucker, L. R. A maximum likelihood solution for the method of successive intervals allowing for unequal stimulus dispersions.Psychometrika, 1967,32, 403–417. · Zbl 0178.23203
[20] Sjöberg, L. Successive intervals scaling of paired comparisons.Psychometrika, 1967,32, 297–308.
[21] Sjöberg, L. Choice frequency and similarity.Scandinavian Journal of Psychology, 1977,18, 103–115.
[22] Sjöberg, L., & Capozza, D. Preference and cognitive structure of Italian political parties.Italian Journal of Psychology, 1975,2, 391–402.
[23] Slater, P. The analysis of personal preferences.British Journal of Statistical Psychology, 1960,13, 119–135.
[24] Takane, Y. A maximum likelihood method for nonmetric multidimensional scaling: I. The case in which all empirical orderings are independent–Theory.Japanese Psychological Research, 1978,20, 7–17.
[25] Takane, Y. Maximum likelihood estimation in the generalized case of Thurstone’s model of comparative judgement.Japanese Psychological Research, 1980,22, 188–196.
[26] Takane, Y. Multidimensional successive categories scaling: a maximum likelihood method.Psychometrika, 1981,46, 9–18. · Zbl 0483.62053
[27] Takane, Y., & Carroll, J. D. Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities.Psychometrika, 1981,46, 389–405.
[28] Thurstone, L. L. A law of comparative judgment.Psychological Review, 1927,34, 273–286.
[29] Tucker, L. R. Intra-individual and inter-individual multidimensionality. In H. Gulliksen & S. Messick (Eds.),Psychological scaling: theory and applications. New York: Wiley, 1960, 155–167.
[30] Wilks, S. S.Mathematical Statistics. New York: Wiley, 1962.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.