×

Partial inverse of a monotone operator. (English) Zbl 0524.90072


MSC:

90C25 Convex programming
90C55 Methods of successive quadratic programming type
47B44 Linear accretive operators, dissipative operators, etc.
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
91B50 General equilibrium theory
90C35 Programming involving graphs or networks
Full Text: DOI

References:

[1] Agmon S (1954) The relaxation method for linear inequalities. Canadian J Math 6:382-392 · Zbl 0055.35001 · doi:10.4153/CJM-1954-037-2
[2] Ahn B (1979) Computation of market equilibria for policy analysis: The project independence evaluation system approach. Garland Publishing Inc. New York
[3] Auslender A (1969) Méthodes númeriques pour la resolution des problèmes d’optimisation avec contraintes. (Thesis) Faculté des Sciences de Grenoble, chap 6
[4] Auslender A (1976) Optimisation, méthodes númeriques. Masson, Paris
[5] Cimmino G (1938) Calcolo approssimato per le soluzioni dei sistemi di equazioni lineari. La Ricerco Scientifico 1938, XVI, Serie II, Anno IX, vol 1. Roma, pp 326-333 · JFM 64.1244.02
[6] Cottle RW, Dantzig GB (1974) Complementarity pivot theory of mathematical programming. In: Dantzig GB, Eaves BC (eds) Studies in optimization. Mathematical Association of America, pp. 27-51
[7] Goffin JL (1980) The relaxation method for solving systems of linear inequalities. Math Oper Res 5:388-414 · Zbl 0442.90051 · doi:10.1287/moor.5.3.388
[8] Lawler E (1976) Combinatorial optimization: Networks and matroids. Holt, Rinehart, and Winston, New York · Zbl 0413.90040
[9] Martinet B (1972) Determination approchée d’un point fixe d’une application pseudo-contractante. In: Cas de l’application prox. CR Acad Sc Paris, ser A, 274:163-165 · Zbl 0226.47032
[10] McLinden L (1972) Minimax problems, saddle functions, and duality. TSR no 1190, Mathematics Research Center, University of Wisconsin
[11] McLinden L (1974) An extension of Fenchel’s duality theorem to saddle functions and dual minimax problems. Pacific J Math 50:135-158 · Zbl 0245.90032
[12] McLinden L (1975) Conjugacy correspondences: a unified view. Trans Amer Math Soc 203:257-274 · Zbl 0275.90033 · doi:10.1090/S0002-9947-1975-0365276-8
[13] McLinden L (1980) The complimentarity problem for maximal monotone multifunctions. In: Variational inequalities and complementarity problems. Cottle RW, Giannessi F, Lions J-L (eds) John Wiley and Sons, New York · Zbl 0499.90073
[14] Minty GJ (1962) Monotone (nonlinear) operators in Hilbert space. Duke Math J 29:341-346 · Zbl 0111.31202 · doi:10.1215/S0012-7094-62-02933-2
[15] Moreau J-J (1965) Proximité et dualité dans un espace Hilbertien. Bull Soc Math France 93:273-299 · Zbl 0136.12101
[16] Motzkin TS, Schoenberg IJ (1954) The relaxation method for linear inequalities. Canadian J Math 6:393-404 · Zbl 0055.35002 · doi:10.4153/CJM-1954-038-x
[17] Opial Z (1967) Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Amer Math Soc 73:591-597 · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[18] Passty GB (1979) Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J Math Anal Appl 72:383-390 · Zbl 0428.47039 · doi:10.1016/0022-247X(79)90234-8
[19] Reich S (1977) On infinite products of resolvents, Lincei. Rend Sc Fis Mat Nat 63:338-340 · Zbl 0407.47034
[20] Rockafellar RT (1968) A general correspondence between dual minimax problems and convex programs. Pacific J Math 25:597-611 · Zbl 0162.23103
[21] Rockafellar RT (1970) Monotone operators associated with saddle functions and minimax problems. In: Browder FE (ed) Nonlinear functional analysis. Proc Symposia in Pure Math, no 18, part 1. American Math Society, Providence, pp 241-250
[22] Rockafellar FT (1970) On the maximality of sums of nonlinear monotone operators. Trans Amer Math Soc 149:75-88 · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[23] Rockafellar RT (1972) Convex analysis. Princeton University Press, Princeton
[24] Rockafellar RT (1973) The multiplier method of Hestenes and Powell applied to convex programming. J Optim Theory Appl 12:555-562 · Zbl 0254.90045 · doi:10.1007/BF00934777
[25] Rockafellar RT (1974) Conjugate duality and optimization. Regional Conference Series in Applied Mathematics No 16, Society of Industrial and Applied Mathematics, Philadelphia · Zbl 0296.90036
[26] Rockafellar RT (1976) Monotone operators and the proximal point algorithm. SIAM J Control Optim 14:877-898 · Zbl 0358.90053 · doi:10.1137/0314056
[27] Rockafellar RT (1976a) Augmented Lagrangians and the proximal point algorithm in convex programming. Math O R 1:97-116 · Zbl 0402.90076 · doi:10.1287/moor.1.2.97
[28] Rockafellar RT (1979) Optimization in networks and monotropic systems (to appear)
[29] Spingarn JE (to appear) Applications of the method of partial inverses to convex programming
[30] Spingarn JE (1982) Partial inverse of a monotone operator. Abstracts of the American Mathematical Society, p 270
[31] Spingarn JE (1982a) A proximal algorithm for decomposable convex programming. Abstracts of the American Mathematical Society, p 549
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.