×

zbMATH — the first resource for mathematics

On universal locally finite groups. (English) Zbl 0525.20025

MSC:
20F50 Periodic groups; locally finite groups
20A15 Applications of logic to group theory
03E55 Large cardinals
20E25 Local properties of groups
20E07 Subgroup theorems; subgroup growth
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. Baumgartner,Almost disjoint sets, Ann. Math. Log.10 (1975), 401–439. · Zbl 0339.04003
[2] D. Giorgetta and S. Shelah,Existentially closed structures in the power of the continuum, Ann. Math. Log., submitted. · Zbl 0561.03018
[3] P. Hall,Some constructions for locally finite groups, J. London Math. Soc.34 (1959), 305–319. · Zbl 0088.02301 · doi:10.1112/jlms/s1-34.3.305
[4] O. Kegel and B. Wehrfritz,Locally Finite Groups, North-Holland Publ. Co., 1973. · Zbl 0259.20001
[5] A. Macintyre and S. Shelah,Uncountable universal locally finite groups, J. Algebra43 (1976), 168–175. · Zbl 0363.20032 · doi:10.1016/0021-8693(76)90150-2
[6] B. H. Neumann,On Amalgam of periodic groups, Proc. R. Soc. London, Ser. A255 (1960), 477–489. · Zbl 0092.02001 · doi:10.1098/rspa.1960.0081
[7] S. Shelah,Categoricity in 1 of sentences of L\(\omega\)1, \(\omega\) (Q). Isr. J. Math.20 (1975), 127–148. · Zbl 0324.02038 · doi:10.1007/BF02757882
[8] S. Shelah,Classification Theory, North-Holland Publ. Co., 1978. · Zbl 0388.03009
[9] S. Shelah,Classification theory for non-elementary classes I, J. Symb. Logic., submitted. · Zbl 1225.03036
[10] S. Shelah,Classification theory for non-elementary classes II, J. Symb. Log., submitted. · Zbl 0639.03034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.