zbMATH — the first resource for mathematics

Automorphismes analytiques d’un domaine de Reinhardt borné d’un espace de Banach à base. (French) Zbl 0525.32027

32M05 Complex Lie groups, group actions on complex spaces
32A07 Special domains in \({\mathbb C}^n\) (Reinhardt, Hartogs, circular, tube) (MSC2010)
32M10 Homogeneous complex manifolds
22E15 General properties and structure of real Lie groups
Full Text: DOI Numdam EuDML
[1] R. BRAUN, W. KAUP and H. UPMEIER, On the automorphisms of circular and Reinhardt domains in complex Banach spaces, Manuscripta Math., 25 (1978), 97-133. · Zbl 0398.32001
[2] E. CARTAN, Sur LES domaines bornés homogènes de l’espace de n variables complexes, Abh. Math. Sem. Univ. Hamburg, 11 (1936), 116-162. · JFM 61.0370.03
[3] H. CARTAN, Sur LES transformations analytiques des domaines cerclés et semi-cerclés bornés, Math. Ann., 106 (1932), 540-576. · JFM 58.0350.02
[4] H. CARTAN, Sur LES groupes de transformations analytiques, Hermann, Paris, 1935. · Zbl 0010.39502
[5] L. HARRIS, Bounded symmetric homogeneous domains in infinite dimensional spaces, in Proceedings on infinite dimensional holomorphy, Lecture Notes, Springer-Verlag, Berlin, n° 364 (1974), 13-40. · Zbl 0293.46049
[6] L. HARRIS, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, in Advances in holomorphy, North-Holland, Amsterdam, 1979, 345-406. · Zbl 0409.46053
[7] L. HARRIS and W. KAUP, Linear algebraic groups in infinite dimensions, Illinois Journal of Maths., 21 (1977), 666-674. · Zbl 0385.22011
[8] W. KAUP, Algebraic characterization of symmetric complex Banach manifolds, Math. Ann., 228 (1977), 39-64. · Zbl 0335.58005
[9] O. LOOS, Bounded symmetric domain and Jordan pairs, Mathematical lectures, University of California, Irvine, 1978.
[10] L. STRACHO, A short proof of the fact that biholomorphic automorphisms of the unit ball in certain lp-spaces are linear, Acta Sci. Math., 41 (1979), 381-383. · Zbl 0432.58006
[11] T. SUNADA, Holomorphic equivalence problem for bounded Reinhardt domain, Math. Ann., 235 (1978), 111-128. · Zbl 0357.32001
[12] P. THULLEN, Die invarianz des mittelpunktes von kreiskörpen, Math. Ann., 104 (1931), 244-259. · JFM 57.0385.03
[13] E. VESENTINI, Variations on a theme of caratheodory, Ann. scuola Norm. Sup. Pisa, 4e serie, 6 (1979), 39-68. · Zbl 0413.46039
[14] J.-P. VIGUÉ, Le groupe des automorphismes analytiques d’un domaine borné d’un espace de Banach complexe. application aux domaines bornés symétriques, Ann. Scient. Ec. Norm. Sup., 4e série, 9 (1976), 203-282. · Zbl 0333.32027
[15] J.-P. VIGUÉ, Automorphismes analytiques des produits continus de domaines bornés, Ann. Scient. Ec. Norm. Sup., 4e série, 11 (1978), 229-246. · Zbl 0405.32007
[16] J.-P. VIGUÉ, Frontière des domaines bornés cerclés homogènes. C.R.A.S., Paris, 288 A (1979), 657-660. · Zbl 0403.32016
[17] J.-P. VIGUÉ, Sur la convexité des domaines bornés cerclés homogènes. Séminaire Lelong-skoda, Lecture Notes, Springer-Verlag, Berlin, n° 822 (1980), 317-331. · Zbl 0444.32016
[18] J.-P. VIGUÉ, Sur la décomposition d’un domaine borné symétrique en produit continu de domaines bornés symétriques irréductibles, Ann. Scient. Ec. Norm. Sup., 4e série, 14 (1981), 453-463. · Zbl 0487.32020
[19] J.-P. VIGUÉ et J. ISIDRO, Sur la topologie du groupe des automorphismes analytiques d’un domaine cerclé borné, Bull. Sc. math., 2e série, 106 (1982), 417-426. · Zbl 0546.32012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.