×

Fonctions à hessien borné. (French) Zbl 0525.46020


MSC:

46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
46F05 Topological linear spaces of test functions, distributions and ultradistributions
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML

References:

[1] ADAMS, Sobolev spaces, Academic Press, New-York, 1975. · Zbl 0314.46030
[2] F. DEMENGEL, Thèse de 3e cycle, Université Paris XI (1982).
[3] F. DEMENGEL, Problèmes variationnels en plasticité parfaite des plaques, in Numerical Analysis and Optimization. Vol. 4. Août 1983. · Zbl 0554.73030
[4] F. DEMENGEL et R. TEMAM. Fonctions convexes d’une mesure (à paraître dans Indiana Journal of Mathematics).
[5] J. DENY et J. L. LIONS, LES espaces du type de beppo Levi, Annales de l’Institut Fourier, 5 (1954), 305-370. · Zbl 0065.09903
[6] E. GAGLIARDO, Caratterizzazioni delle trace sulla frontiera relative aleune classi di funzioni in n variabile, Rend. Sem. Mat. Padova, 27 (1957), 284-305. · Zbl 0087.10902
[7] E. GIUSTI, Minimal surfaces and functions of bounded variation. Notes de cours rédigées par G. H. Williams, Dep. of Math., Australian National University, Canberra, 10, 1977. · Zbl 0402.49033
[8] C. MIRANDA, Comportamento delle succesioni convergenti di frontiere minimale. Rend. Semin. Univ. Padova, (1967), 238-257. · Zbl 0154.37102
[9] J. J. MOREAU, Champs et distributions de tenseurs déformation sur un ouvert de connexité quelconque, Séminaire d’Analyse Convexe, Université de Montpellier, 6 (1976). · Zbl 0362.46029
[10] DE RHAM, Variétés différentiables, Hermann, Paris, 1960.
[11] J. RAUCH et B. A. TAYLOR, Communication privée.
[12] SCHWARTZ, Théorème des distributions, Hermann, Paris, 1950-1951 (2e édition 1957). · Zbl 0050.11402
[13] G. STRANG et R. TEMAM, Functions of bounded deformation, Arch. Rat. Mech. Anal., 75 (1980), 7-21. · Zbl 0472.73031
[14] P. SUQUET, Existence et régularité des solutions de la plasticité. C.R.A.S., Paris, 286, Série A (1978), 1201-1204. · Zbl 0378.35057
[15] R. TEMAM, Navier-Stokes equations, theory and numerical analysis, 2e édition, North-Holland, Amsterdam, New-York, 1979. · Zbl 0426.35003
[16] R. TEMAM, On the continuity of the trace of vector functions with bounded deformations, Applicable Analysis, 11 (1981), 291-302. · Zbl 0504.46027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.