×

Scattering theory and the trace of the wave group. (English) Zbl 0525.47007


MSC:

47A40 Scattering theory of linear operators
35P25 Scattering theory for PDEs
81U20 \(S\)-matrix theory, etc. in quantum theory

Citations:

Zbl 0186.163
Full Text: DOI

References:

[1] Andersson, K. G.; Melrose, R. B., Invent. Math., 41, 197-232 (1977) · Zbl 0373.35053
[2] Bardos, C.; Guillot, J.-C; Ralston, J. V., C. R. Acad. Sci. Paris, 290 (1980)
[3] Chazarain, J., Invent. Math., 24, 65-82 (1974) · Zbl 0281.35028
[4] de Verdière, Y. Colin, Compositio Math., 27, 159-184 (1973) · Zbl 0281.53036
[5] Duistermaat, J. J.; Guillemin, V. W., Invent. Math., 29, 39-79 (1975) · Zbl 0307.35071
[6] Goh’berg, I.; Krein, M. G., Introduction to the theory of Non-Self-Adjoint Operators, (AMS Translations, Vol. 18 (1969), Amer. Math. Soc: Amer. Math. Soc Providence, R. I) · Zbl 0181.13503
[7] Guillemin, V. W.; Melrose, R. B., Adv. in Math., 32, 204-232 (1979) · Zbl 0421.35082
[8] Ivrii, V. Ya, Functional Anal. Appl., 14, 98-106 (1980) · Zbl 0453.35068
[9] Lax, P. D.; Phillips, R. S., (Topics in Functional Analysis. Essays Dedicated to M. G. Krein on the Occasion of this 70th Birthday. Topics in Functional Analysis. Essays Dedicated to M. G. Krein on the Occasion of this 70th Birthday, Advance in Mathematics Math. Supplementary Studies, Vol. 3 (1978), Academic Press: Academic Press New York), 197-215 · Zbl 0431.00019
[10] Lax, P. D.; Phillips, R. S., Comm. Pure Appl. Math., 29, 737-787 (1969) · Zbl 0181.38201
[11] Lax, P. D.; Phillips, R. S., Scattering Theory (1967), Academic Press: Academic Press New York · Zbl 0214.12002
[12] Lax, P. D.; Phillips, R. S., Arch. Rational Mech. Anal., 40, 268-280 (1971) · Zbl 0216.13002
[13] Melrose, R. B., Duke Math. J., 46, 43-59 (1979) · Zbl 0415.35050
[14] Ralston, J. V., (Garnir, H. G., Singularities in Boundary Value Problems (1981), Reidel: Reidel Dordrecht)
[15] Yoshida, K., Functional Analysis (1971), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0217.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.