Borwein, J. M. A note on epsilon-subgradients and maximal monotonicity. (English) Zbl 0525.49010 Pac. J. Math. 103, 307-314 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 38 Documents MSC: 49J45 Methods involving semicontinuity and convergence; relaxation 26E15 Calculus of functions on infinite-dimensional spaces 58C20 Differentiation theory (Gateaux, Fréchet, etc.) on manifolds 26A51 Convexity of real functions in one variable, generalizations 46A03 General theory of locally convex spaces 46B99 Normed linear spaces and Banach spaces; Banach lattices 47H05 Monotone operators and generalizations Keywords:maximal monotonicity; epsilon-subgradient; directional derivatives PDF BibTeX XML Cite \textit{J. M. Borwein}, Pac. J. Math. 103, 307--314 (1982; Zbl 0525.49010) Full Text: DOI