×

zbMATH — the first resource for mathematics

The graph of a foliation. (English) Zbl 0526.53039

MSC:
53C12 Foliations (differential geometric aspects)
57R30 Foliations in differential topology; geometric theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] GRAY, A., Pseudo-Riemannian Almost Product Manifolds and Submersions, Journal of Math. and Mech. 16 (1967), 715–738. · Zbl 0147.21201
[2] HAEFLIGER, A., Variétés Feuilletées, Ann. Scuola Norm. Sup. Pisa 16 (1962), 367–307.
[3] HERMANN, R., On the Differential Geometry of Foliations,Ann. of Math. 72 (1960), 445–457. · Zbl 0196.54204
[4] HERMANN, R., A sufficient conditions that a mapping or riemannian manifolds be a fiber bundle, Proc. A.M.S. 11 (1960), 236–242. · Zbl 0112.13701
[5] MILNOR, J., Morse Theory, Princeton U. Press, 1963.
[6] MILNOR, J. and STASHEFF, J., Characteristic Classes, Princeton U. Press, 1974. · Zbl 0298.57008
[7] O’NEILL, B., The Fundamental Equations of a Submersion, Michigan Math. J. 13 (1966), 459–469. · Zbl 0145.18602
[8] REINHART, B., Foliated Manifolds with Bundle Like Metrics, Ann. of Math. 69 (1959), 119–132. · Zbl 0122.16604
[9] THOM, R., frGénéralisation de la Théorie de Morse aux Variétés Feuilletées, Ann. Inst. Fourier Grenoble 14 (1964), 173–190.
[10] WEINSTEIN, A., Symplectic Geometry, Bull, A.M.S. (new series) 5 (1981), 1–12. · Zbl 0465.58013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.