Jacod, Jean Processus à accroissements independants: Une condition necessaire et suffisante de convergence en loi. (French) Zbl 0526.60065 Z. Wahrscheinlichkeitstheor. Verw. Geb. 63, 109-136 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 6 Documents MSC: 60J99 Markov processes 60F17 Functional limit theorems; invariance principles 60G44 Martingales with continuous parameter Keywords:functional limit theorem × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Aldous, D.: Weak convergence of stochastic processes, for processes viewed in the Strasbourg manner. A paraitre (1978) [2] Billingsley, P., Convergence of Probability Measures (1968), New York: J. Wiley and sons, New York · Zbl 0172.21201 [3] Doob, J. L., Stochastic Processes (1953), New York: J. Wiley and sons, New York · Zbl 0053.26802 [4] Gnedenko, B. W.; Kolmogorov, A. N., Limit distributions for sums of independent random variables (1954), Cambridge (Mass): Addison-Wesley, Cambridge (Mass) · Zbl 0056.36001 [5] Jacod, J., Calcul stochastique et problèmes de martingales, Lect. Notes in Math. 714. (1979), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York · Zbl 0414.60053 [6] Jacod, J.; Kłopotowski, A.; Memin, J., Théorème de la limite centrale et convergence fonctionnelle vers un processus à accroissements indépendants: la méthode des martingales, Ann. I.H.P., XVIII, n∘ 1, 1-45 (1982) · Zbl 0493.60033 [7] Jacod, J.; Memin, J., Sur la convergence des semimartingales vers un processus à accroissements indépendants. Sém. Proba. XIV, Lect. Notes in Math. 784, 227-248 (1980), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York · Zbl 0433.60034 [8] Jacod, J.; Memin, J.; Metivier, M., On tightness and stopping times, Stoch. Proc. and Appl., 14, 109-146 (1983) · Zbl 0501.60029 [9] Lindvall, T., Weak convergence of probability measures and random functions in the function space D[0, ∞[, J. Appl. Probab., 10, 109-121 (1973) · Zbl 0258.60008 [10] Meyer, P. A., Un cours sur les intégrales stochastiques, Lect. Notes in Math. 511, 245-400 (1976), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York · Zbl 0374.60070 [11] Petrov, V. V., Sums of Independent Random Variables (1975), Berlin Heidelberg New York: Springer, Berlin Heidelberg New York · Zbl 0322.60043 [12] Stone, C., Weak convergence of stochastic processes defined on a semifinite time interval, Proc. Amer. Math. Soc., 14, 694-696 (1963) · Zbl 0116.35602 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.