×

zbMATH — the first resource for mathematics

Finite element methods for linear hyperbolic problems. (English) Zbl 0526.76087

MSC:
76R99 Diffusion and convection
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Brenner, P.; Thomée, V., Estimates near discontinuities for some difference schemes, Math. scand., 27, 5-23, (1970) · Zbl 0208.16201
[2] Brooks, A., A Petrov-Galerkin finite element formulation for convective dominated flows, ()
[3] Ciarlet, P.G., The finite element method for elliptic problems, (1978), North-Holland Amsterdam · Zbl 0445.73043
[4] Friedrichs, K.O., Symmetric positive differential equations, (), 333-418 · Zbl 0083.31802
[5] Hughes, T.J.R.; Brooks, A., A multidimensional upwind scheme with no crosswind diffusion, () · Zbl 0423.76067
[6] T.J.R. Hughes and A. Brooks, A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the Streamline-upwind procedure, to appear in: R.H. Gallagher, ed., Finite Elements in Fluids, Vol. 4 (Wiley, New York).
[7] Hughes, T.J.R.; Tezduyar, T.E.; Brooks, A., Streamline upwind formulation for advection-diffusion, Navier-Stokes and first order hyperbolic equations, () · Zbl 0506.76026
[8] Jamet, P., Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain, SIAM J. numer. anal., 15, 912-928, (1978) · Zbl 0434.65091
[9] Johnson, C.; Nävert, U., An analysis of some finite element methods for advection-diffusion problems, () · Zbl 0455.76081
[10] Johnson, C., Finite element methods for convection-diffusion problems, () · Zbl 0505.76099
[11] Johnson, C.; Pitkäranta, J., Convergence of a fully discrete scheme for two-dimensional neutron transport, SIAM J. numer. anal., 20, 951-966, (1983) · Zbl 0538.65097
[12] Johnson, C.; Pitkäranta, J., An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, () · Zbl 0618.65105
[13] C. Johnson and Huang Mingyou, An analysis of the discontinuous Galerkin method for Friedrichs’ systems, to appear.
[14] Lesaint, P.; Raviart, P.A., On a finite element method for solving the neutron transport equation, () · Zbl 0417.65056
[15] Lesaint, P., Sur la resolution des systemes hyperboliques du premier ordre par de methodes d’elements finis, These, université Paris VI, (1975)
[16] Nitsche, J.; Schatz, A., Interior estimates for Ritz-Galerkin methods, Math. comput., 28, 937-958, (1974) · Zbl 0298.65071
[17] Nävert, U., A finite element method for convection-diffusion problems, ()
[18] Raithby, G.D., Skew upstream differencing schemes for problems involving fluid flow, Comput. meths. appl. mech. engrg., 9, 153-164, (1976) · Zbl 0347.76066
[19] Thomée, V., Some interior estimates for semidiscrete Galerkin approximations for parabolic equations, Math. comput., 33, 37-62, (1979) · Zbl 0419.65073
[20] Vishik, M.I.; Lyusternik, L.A., Regular degeneration and boundary layer for linear differential equations with a small parameter, Uspekki mat. nauk., Amer. math. soc. transl. ser., 2 20, 239-364, (1962) · Zbl 0122.32402
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.