On semidirect products of two finite semilattices. (English) Zbl 0527.20046


20M07 Varieties and pseudovarieties of semigroups
20M10 General structure theory for semigroups
68Q45 Formal languages and automata


Zbl 0359.94067
Full Text: DOI EuDML


[1] Aho, Hopcroft, Ullman. The Design and Analysis of Computer Algorithms, Addision Wesley (1974) · Zbl 0326.68005
[2] J. Brozozowski and J. Simon, Characterizations of locally testable events, Discrete Mathematics, vol. 4 (1973), 243–271. · Zbl 0255.94032 · doi:10.1016/S0012-365X(73)80005-6
[3] S. Eilenberg, Automata, Languages and Machines, vol. B, Academic Press, New York (1976) · Zbl 0359.94067
[4] J. Karnofsky and J. Rhodes, Deciadability of complexity one-half for finite semigroups. Semigroup Forum, vol. 24 (1982), 55–66. · Zbl 0503.20028 · doi:10.1007/BF02572755
[5] G. Lallement, Semigroups and combinatorial applications, Wiley, New York (1979) · Zbl 0421.20025
[6] H. Neumann, Varieties of groups, Springer (1967) · Zbl 0149.26704
[7] J.-E. Pin, Variétés de langages et variétés de semigroupes Thèse Paris (1981)
[8] J.-E. Pin, Hiérarchies de concaténation. (To appear).
[9] J.-E. Pin, A decidability result on finite semigroups, submitted.
[10] D. Thérien, Classification of finite monoids. The language approach, Theoretical Computer Science 14 (1981), 195–208. · Zbl 0471.20055 · doi:10.1016/0304-3975(81)90057-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.