On some properties of the solutions of the third order nonlinear differential equations with delay. (English) Zbl 0527.34062


34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
34C99 Qualitative theory for ordinary differential equations
34E05 Asymptotic expansions of solutions to ordinary differential equations
34A34 Nonlinear ordinary differential equations and systems
Full Text: EuDML


[1] GREGUŠ M.: Über die lineare homogene Differentialgleichung dritter Ordnung. Wissenschaftliche Zeitschrift der Martin-Luther-Universität Halle-Wittenberg Math. Nat., XII/3, März 1963, 265-286. · Zbl 0118.30501
[2] HANAN M.: Oscillation criteria for third-order linear differential equations. Pacific J. Math. 11, (1961), 919-944. · Zbl 0104.30901 · doi:10.2140/pjm.1961.11.919
[3] HEIDEL J. W.: Qualitative behavior of solutions of a third order nonlinear differential equation. Pacific J. Math. 27, 1968, 507-526. · Zbl 0172.11703 · doi:10.2140/pjm.1968.27.507
[4] KIKURADZE I.: Concerning the question of oscillatory solutions of nonlinear differential equations. Diff. Urav. 1 1965, 995-1006.
[5] LAZER A. C.: The behavior of solutions of the differential equation y”’+p(x)y’+q(x)y” = 0. Pac. J. Math. (3) 17, 1966, 435-466. · Zbl 0143.31501 · doi:10.2140/pjm.1966.17.435
[6] LIČKO I., ŠVEC M.: Le caractère oscillatoire des solutions de ľéquation y(n) + f(x)y = 0. Czechoslovak Math. J. 88, 1963, 481-491. · Zbl 0123.28202
[7] MIKUSINSKI J. G.: On Fite’s oscillation theorems. Colloquium Math. 2, 1949, 34-39. · Zbl 0039.31302
[8] ŠVEC M.: Einige asymptotische und oszillatorische Eigenschaften der Differentialgleichungen y”’ + A(x)y’ + B(x)y = 0. Czechoslovak Math. J. 15 1965, 378-393. · Zbl 0143.11202
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.