Sacks, Jonathan; Uhlenbeck, K. Minimal immersions of closed Riemann surfaces. (English) Zbl 0527.58008 Trans. Am. Math. Soc. 271, 639-652 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 5 ReviewsCited in 53 Documents MSC: 58E12 Variational problems concerning minimal surfaces (problems in two independent variables) 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces 53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) 55M30 Lyusternik-Shnirel’man category of a space, topological complexity à la Farber, topological robotics (topological aspects) 58E20 Harmonic maps, etc. 49Q05 Minimal surfaces and optimization Keywords:minimal branched immersions; conformal structures; Teichmueller spaces; hyperbolic 3-manifolds PDFBibTeX XMLCite \textit{J. Sacks} and \textit{K. Uhlenbeck}, Trans. Am. Math. Soc. 271, 639--652 (1982; Zbl 0527.58008) Full Text: DOI References: [1] William Abikoff, Degenerating families of Riemann surfaces, Ann. of Math. (2) 105 (1977), no. 1, 29 – 44. · Zbl 0347.32010 · doi:10.2307/1971024 [2] William Abikoff, On boundaries of Teichmüller spaces and on Kleinian groups. III, Acta Math. 134 (1975), 211 – 237. · Zbl 0322.30017 · doi:10.1007/BF02392102 [3] -, Topics in the real analytic theory of Teichmüller space, mimeographed notes, Univ. of Illinois at Urbana-Champaign. [4] Lipman Bers, Uniformization, moduli, and Kleinian groups, Bull. London Math. Soc. 4 (1972), 257 – 300. · Zbl 0257.32012 · doi:10.1112/blms/4.3.257 [5] Lipman Bers, On boundaries of Teichmüller spaces and on Kleinian groups. I, Ann. of Math. (2) 91 (1970), 570 – 600. · Zbl 0197.06001 · doi:10.2307/1970638 [6] Lipman Bers, Spaces of degenerating Riemann surfaces, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) Princeton Univ. Press, Princeton, N.J., 1974, pp. 43 – 55. Ann. of Math. Studies, No. 79. · Zbl 0045.42501 [7] Lipman Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978), no. 1-2, 73 – 98. · Zbl 0389.30018 · doi:10.1007/BF02545743 [8] James Eells Jr. and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109 – 160. · Zbl 0122.40102 · doi:10.2307/2373037 [9] Robert Gulliver, Branched immersions of surfaces and reduction of topological type. II, Math. Ann. 230 (1977), no. 1, 25 – 48. · Zbl 0338.57014 · doi:10.1007/BF01420574 [10] R. D. Gulliver II, R. Osserman, and H. L. Royden, A theory of branched immersions of surfaces, Amer. J. Math. 95 (1973), 750 – 812. · Zbl 0295.53002 · doi:10.2307/2373697 [11] Philip Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967), 673 – 687. · Zbl 0148.42404 · doi:10.4153/CJM-1967-062-6 [12] Philip Hartman and Aurel Wintner, On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math. 75 (1953), 449 – 476. · Zbl 0052.32201 · doi:10.2307/2372496 [13] John Hempel, 3-Manifolds, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. · Zbl 0345.57001 [14] Troels Jørgensen, Compact 3-manifolds of constant negative curvature fibering over the circle, Ann. of Math. (2) 106 (1977), no. 1, 61 – 72. · Zbl 0368.53025 · doi:10.2307/1971158 [15] Luc Lemaire, Applications harmoniques de surfaces riemanniennes, J. Differential Geom. 13 (1978), no. 1, 51 – 78 (French). · Zbl 0388.58003 [16] L. A. Ljusternik, The topology of the calculus of variations in the large, Translated from the Russian by J. M. Danskin. Translations of Mathematical Monographs, Vol. 16, American Mathematical Society, Providence, R.I., 1966. [17] R. Schoen and Shing Tung Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110 (1979), no. 1, 127 – 142. · Zbl 0431.53051 · doi:10.2307/1971247 [18] J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. (2) 113 (1981), no. 1, 1 – 24. · Zbl 0462.58014 · doi:10.2307/1971131 [19] D. Sullivan, Travaux de Thurston sur les groupes quasi-Fuchsiens et les variétés hyperboliques de dimension \( 3\) fibrées sur \( {S^1}\), Séminaire Bourbaki, 32e année (1979/80), no. 554, pp. 1-17. [20] W. Thurston, The geometry and topology of \( 3\)-manifolds, mimeographed notes, Princeton Univ., Princeton, N. J. [21] K. Uhlenbeck, Morse theory by perturbation methods with applications to harmonic maps, Trans. Amer. Math. Soc. 267 (1981), no. 2, 569 – 583. · Zbl 0509.58012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.