Ghys, Etienne Flots d’Anosov sur les 3-variétés fibrées en cercle. (French) Zbl 0527.58030 Ergodic Theory Dyn. Syst. 4, 67-80 (1984). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 29 Documents MSC: 37D99 Dynamical systems with hyperbolic behavior 37D40 Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.) 53D25 Geodesic flows in symplectic geometry and contact geometry 53C20 Global Riemannian geometry, including pinching 37C85 Dynamics induced by group actions other than \(\mathbb{Z}\) and \(\mathbb{R}\), and \(\mathbb{C}\) Keywords:Anosov flows; topological equivalence; circle bundle over a surface; closed hyperbolic manifold PDF BibTeX XML Cite \textit{E. Ghys}, Ergodic Theory Dyn. Syst. 4, 67--80 (1984; Zbl 0527.58030) Full Text: DOI References: [1] Franks, Springer Lecture Notes in Math none pp 158– (none) [2] Franks, Proc. Sympos. Pure Math. 14 pp 61– (1970) · doi:10.1090/pspum/014/0271990 [3] Anosov, Proc. Steklov Institute 90 pp none– (1967) [4] Verjovsky, Bol. Soc. Mexicana 19 pp 49– (1974) [5] Tomter, Proc. Symp. Pure Math. 14 pp 299– (1970) · doi:10.1090/pspum/014/0279831 [6] DOI: 10.1007/BF01390039 · Zbl 0435.58019 · doi:10.1007/BF01390039 [7] DOI: 10.1016/0040-9383(72)90002-X · Zbl 0246.58014 · doi:10.1016/0040-9383(72)90002-X [8] DOI: 10.1007/BF02566099 · Zbl 0393.57004 · doi:10.1007/BF02566099 [9] DOI: 10.1007/BF01389915 · Zbl 0428.57008 · doi:10.1007/BF01389915 [10] DOI: 10.2307/1971011 · Zbl 0272.53025 · doi:10.2307/1971011 [11] DOI: 10.2307/1971256 · Zbl 0382.57010 · doi:10.2307/1971256 [12] DOI: 10.1007/BF02684367 · Zbl 0356.57017 · doi:10.1007/BF02684367 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.