Hydrodynamics in two dimensions and vortex theory. (English) Zbl 0527.76021


76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI


[1] Friedrichs, K.O.: Special topics in fluid dynamics. New York: Gordon and Breach 1966 · Zbl 0212.58601
[2] Hald, O., Mauceri Del Prete, V.: Math. Comput.32, 791 (1978)
[3] Saffman, P.G., Baker, G.R.: Ann. Rev. Fluid Mech.11, 95 (1979) · doi:10.1146/annurev.fl.11.010179.000523
[4] Kato, T.: Arch. Rat. Mech. Anal.25, 95 (1967) · Zbl 0166.45302 · doi:10.1007/BF00251588
[5] Inue, A., Funaki, T.: Commun. Math. Phys.65, 83 (1979) · Zbl 0404.35079 · doi:10.1007/BF01940961
[6] Martinelli, F., Micheli, L.: Private communication
[7] Dobrushin, R.L.: Sov. J. Funct. Anal.13, 115 (1979) · Zbl 0422.35068 · doi:10.1007/BF01077243
[8] McKean, H.P.: Propagation of chaos for a class of nonlinear parabolic equations, Lecture in differential equations, Vol. 2, Aziz, A.K. (ed.). Princeton, NJ: Van Nostrand 1969 · Zbl 0181.44401
[9] Dobrushin, R.L.: Teor. Veroyatn. Priloz.15, 469 (1970)
[10] Gihman, I.I., Skorohod, A.V.: Introduction a la theorie des processus aleatoires. Moskow: MIR 1980
[11] Dürr, D., Pulvirenti, M.: On the vortex flow in bounded domains. Commun. Math. Phys. (in press) (1982)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.