×

Predicting peptides structure with solvation potential and rotamer library dependent of the backbone. (English) Zbl 1136.92016

Summary: Genetic algorithms (GAs) concepts along with a rotamer library dependent of backbone and implicit solvation potential are used to study the tertiary structure of peptides. We start from a known primary sequence and optimize the structure of the backbone while the side chains allow adopting the conformations present in a rotamer library. The GA, implemented with two force fields with growing complexity, was used predict the structure of a polyalanine and a polyisolueucine. This paper presents good and interesting results about the study of peptide structures and about the development of computational tools to study peptide structures.

MSC:

92C40 Biochemistry, molecular biology
90C59 Approximation methods and heuristics in mathematical programming
92-08 Computational methods for problems pertaining to biology

Software:

InterViewer
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Baldi, P., Exploiting the past and the future in protein secondary structure prediction, Bioinformatics, 15, 11, 937-946 (1999)
[2] Dill, V., Principles of protein folding – a perspective form simple exact models, Protein Sci., 4, 561-602 (1995)
[3] Cui, Y., Protein folding simulation with genetic algorithm and supersecondary structure constraints, Proteins: Struct. Funct. Genet., 31, 247-257 (1998)
[4] Kim, P. S.; Baldwin, R. L., Intermediates in the folding reactions of small proteins, Annu. Rev. Biochem., 50, 631-660 (1990)
[5] Kollman, P. A.; Djam, Y.; Lee, M. R., State of the art in studying protein folding and protein structure prediction using molecular dynamics methods, J. Mol. Graph. Model., 19, I1, 146-149 (2001)
[6] Desjarlais, J. R.; Handel, T. M., Side-chain backbone flexibility in protein core design, J. Mol. Biol., 290, I:July, 305-318 (1999)
[7] Leonhard, K., Solvent-amino acid interaction energies in three-dimensional-lattice Monte Carlo simulations of a model 27-mer protein: folding thermodynamics and kinetics, Protein Sci., May, 2358-2369 (2004)
[8] Radja, K., Conservation of statistical results under the reduction of pair-contact interactions to salvation interaction, Phys. Rev. E, 72, 061915 (2005)
[9] Peterson, R. W., Improved side-chain prediction accuracy using an ab initio potential energy function and very large rotamer library, Protein Sci., 13, 735-751 (2004)
[10] Wang, J.; Wang, W.; Huo, S.; Lee, M.; Kollman, A., Solvation model based on weighted solvent accessible surface area, J. Phys. Chem. B, 105, 505-507 (2001)
[11] Rost, B.; Sander, C., Combining evolutionary information and neural networks to predict protein secondary structure, Proteins: Struct. Funct. Genet., 19, 55-72 (1999)
[12] Ponder, J. W.; Richards, F. M., Tertiary templates for protein use packing criteria in the enumeration of allowed sequences for different structural classes, J. Mol. Biol., 193, 775-791 (1987)
[13] Pendersen, T. J.; Moult, J., Protein folding simulations with genetic algorithms and a detailed molecular description, J. Mol. Biol., 269, 240-259 (1997)
[14] Belda, I., ENPDA: an evolutionary structure-based de novo peptide design algorithm, J. Comput.-Aided Mol. Des., 19, 585-601 (2005)
[15] Amari, S.; Aizawa, M.; Zhang, J.; Fukuzawa, S., VISCANA: visualized cluster analysis of protein-ligand interaction based on the ab initio fragment molecular orbital method for virtual ligand screening, J. Chem. Inf. Model, 46, 221-230 (2006)
[16] Barton, G., Protein secondary structure prediction, Curr. Opin. Struct. Biol., 5, 372-376 (1995)
[17] Bohr, H.; Bohr, J.; Brunak, S.; Cotterill, R. M.J.; Lautrup, B.; Nørskov, L.; Olsen, O.; Petersen, S., Protein secondary structure and homology by neural networks, FEBS Lett., 241, 223-228 (1998)
[18] Bonneau, R., Contact order and ab initio protein structure prediction, Protein Sci., 11, 1937-1944 (2002)
[19] Bottegoni, G.; Cavalli, A.; Racnatinni, M. A., Comparative study on the application of hierarchical-agglomerative clustering approaches to organize outputs of reiterated docking runs, J. Chem. Inf. Model, 46, 852-862 (2006)
[20] Bystroff, C.; Baker, D., Prediction of local structure in proteins using a library of sequence-structure motifs, J. Mol. Biol., 281, 565-577 (1999)
[21] Cai, Y.; Li, Y.; Chou, K. C., Using neural networks for prediction of domain structure, Biochim. Biophys. Acta, 1476, 1-2 (2000)
[22] Canutescu, A., A graph-theory algorithm for rapid protein side-chain prediction, Protein Sci., 12, 2001-2004 (2003)
[23] Chandonia, J. M.; Karplus, M., New methods for accurate prediction of protein secondary structure, Proteins: Struct. Funct. Genet., 35, 293-306 (1999)
[24] Chen, H., On evaluating molecular-docking methods for pose prediction and enrichment factors, J. Chem. Inf. Model, 46, 401-415 (2006)
[25] Compiani, M., An entropy criterion to detect minimally frustrated intermediates in native proteins, Proc. Natl. Acad. Sci. USA, 95, 9290-9294 (1998)
[26] L.P.B. Scott, J. Chahine, J.R. Ruggiero, Use of genetic algorithms and solvation potential to study peptides structure. <http://dx.doi.org/10.1016/j.amc.2007.05.002>; L.P.B. Scott, J. Chahine, J.R. Ruggiero, Use of genetic algorithms and solvation potential to study peptides structure. <http://dx.doi.org/10.1016/j.amc.2007.05.002> · Zbl 1260.90163
[27] Dandekar, T.; Argos, P., Folding the main chain of small proteins with the genetic algorithm, J. Mol. Biol., 236, 844-861 (1993)
[28] Fang, Q.; Shortle, D., New fold methods: prediction reports, Protein: Struct. Funct. Genet., 53, S6, 486-490 (2003)
[29] Frishman, D.; Argos, P., Incorporation of non-local interactions in protein secondary structure prediction from amino acid sequence, Protein Eng., 9, 2, 133-142 (1996)
[30] Gan, H. H.; Trospha, A.; Schllick, T., Generating folded protein structures with lattice growth algorithm, J. Chem. Phys., 113, 12 (2000)
[31] Gray, J. F., Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations, J. Mol. Biol., 331, 281-299 (2003)
[32] Jacobson, M., Force field validation using protein side chain prediction, J. Phys. Chem. B, 106, 44, 11673-11680 (2002)
[33] Kono, H.; Doi, J., Energy minimization method using automata network for sequence and side-chain conformation prediction form given backbone geometry, Proteins: Struct. Funct. Genet., 19, 244-255 (1994)
[34] Kolinsket, A., A reduced model of short range interactions in polypeptides chains, J. Chem. Phys., 103, 10 (1995)
[35] Liang, S.; Grishin, N. V., Side-chain modeling with an optimized scoring function, Protein Sci., 11, 322-331 (2002)
[36] Moult, J., Critical assessment of methods of protein structure prediction (CASP)- round 5, Proteins: Struct. Funct. Genet., 53, S6, 334-339 (2003)
[37] Ofran, Y.; Rost, B., Predicted protein-protein interaction sites from local sequence information, FEBS Lett., 544, 236-239 (2003)
[38] Qian, H., Prediction of α-helices in proteins based on thermodynamic parameters form solution chemistry, J. Mol. Biol., 256, 663-666 (1996)
[39] B. Rost, Protein secondary structure prediction continues to rise: <http://cubic.bioc.columbia.edu/papers/2000_opinion>; B. Rost, Protein secondary structure prediction continues to rise: <http://cubic.bioc.columbia.edu/papers/2000_opinion>
[40] Saunders, C. T.; Bakers, D., Evaluation of structural and evolutionary contributions to deleterious mutation prediction, J. Mol. Biol., 322, 891-901 (2002)
[41] Samudrala, R.; Huang, S. E.; Koehl, P.; Levitt, M., Constructing side chains on near-native main chains for ab initio protein structure prediction, Protein Eng., 13, 7, 453-457 (2000)
[42] Sun, S., A Genetic algorithm that seeks native states of peptides and proteins, Biophys. J., 69, 340-355 (1995)
[43] Unger, R.; Moult, J., Genetic algorithms for protein folding simulations, J. Mol. Biol., 231, 75-81 (1993)
[44] Zhang, Y.; Skolinick, J., The protein structure prediction problem could be solved using the current PDB library, PNAS, 102, 4, 1029-1034 (2005)
[45] Dunbrack, R. L.; Karplus, M., Backbone-dependent rotamer library for proteins: application to side-chain prediction, J. Mol. Biol., 230, 543-574 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.