×

Homogeneous subgroups of completely decomposable groups. (English) Zbl 0528.20040


MSC:

20K27 Subgroups of abelian groups
20K25 Direct sums, direct products, etc. for abelian groups
Full Text: DOI

References:

[1] R. Baer, Abelian groups without elements of finite order. Duke Math. Jour.3, 68-122 (1937). · Zbl 0016.20303 · doi:10.1215/S0012-7094-37-00308-9
[2] L. Bican, Completely decomposable groups any pure subgroup of which is completely decomposable. Czechoslovak Math. J.24, (99), 176-191 (1974). · Zbl 0314.20037
[3] M. C. R. Butler, A class of torsion-free abelian groups of finite rank. Proc. London Math. Soc. (3)15, 680-698 (1965). · Zbl 0131.02501 · doi:10.1112/plms/s3-15.1.680
[4] L.Fuchs, Infinite Abelian groups, Vol. 2. New York 1973. · Zbl 0257.20035
[5] P. Hill, On freeness of abelian groups: A generalisation of Pontryagin’s theorem. Bull. Amer. Math. Soc.76, 1118-1120 (1970). · Zbl 0223.20058 · doi:10.1090/S0002-9904-1970-12586-1
[6] P. Hill, New criteria for freeness in abelian groups II. Trans. Amer. Math. Soc.196. 191-201 (1974). · Zbl 0296.20026 · doi:10.1090/S0002-9947-1974-0352294-8
[7] G.Kolettis, Homogeneously decomposable modules. Studies on Abelian groups, 223-238. Paris 1968. · Zbl 0213.30802
[8] G. L.Nongxa, A note on homogeneous torsion-free abelian groups. To appear. · Zbl 0584.20040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.