×

zbMATH — the first resource for mathematics

Regularization theorems in Lie algebra cohomology. Applications. (English) Zbl 0528.22010

MSC:
22E41 Continuous cohomology of Lie groups
17B56 Cohomology of Lie (super)algebras
22E46 Semisimple Lie groups and their representations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Borel, Stable and \(L^2\)-cohomology of arithmetic groups , Bull. Amer. Math. Soc. (N.S.) 3 (1980), no. 3, 1025-1027. · Zbl 0472.22002 · doi:10.1090/S0273-0979-1980-14840-5
[2] A. Borel, Stable real cohomology of arithmetic groups. II , Manifolds and Lie groups (Notre Dame, Ind., 1980), Progr. Math., vol. 14, Birkhäuser Boston, Mass., 1981, pp. 21-55. · Zbl 0483.57026
[3] A. Borel, Cohomology and spectrum of an arithmetic group , Proc. Conf. on Group Representations and and Operator Algebras, Neptun, Rumania, To appear, 1980. · Zbl 0472.22002 · doi:10.1090/S0273-0979-1980-14840-5
[4] A. Borel and W. Casselman, \(L^2\)-cohomology of locally symmetric manifolds of finite volume , Duke Math. J. 50 (1983), no. 3, 625-647. · Zbl 0528.22012 · doi:10.1215/S0012-7094-83-05029-9
[5] A. Borel and N. R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups , Annals of Mathematics Studies, vol. 94, Princeton University Press, Princeton, N.J., 1980. · Zbl 0443.22010
[6] J. L. Brylinski and J. P. Labesse, Cohomologie d’intersection et fonctions \(L\) de certaines variétés de Shimura , preprint, 1982.
[7] W. Casselman, \(L^2\)-cohomology of real rank one groups , Proc. Conf. in Utah, to appear, 1982. · Zbl 0528.22011
[8] J. Cheeger, On the Hodge theory of Riemannian pseudomanifolds , Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 91-146. · Zbl 0461.58002
[9] W. Greub, S. Halperin, and R. Vanstone, Connections, curvature, and cohomology , Academic Press [Harcourt Brace Jovanovich Publishers], New York, 1976. · Zbl 0372.57001
[10] G. Hochschild and J.-P. Serre, Cohomology of Lie algebras , Ann. of Math. (2) 57 (1953), 591-603. · Zbl 0053.01402 · doi:10.2307/1969740
[11] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie , Bull. Soc. Math. France 78 (1950), 65-127. · Zbl 0039.02901 · numdam:BSMF_1950__78__65_0 · eudml:86845
[12] T. Kudo and S. Araki, Topology of \(H_ n\)-spaces and \(H\)-squaring operations , Mem. Fac. Sci. Kyūsyū Univ. Ser. A. 10 (1956), 85-120. · Zbl 0074.38502 · doi:10.2206/kyushumfs.10.85
[13] R. P. Langlands, On the functional equations satisfied by Eisenstein series , Springer-Verlag, Berlin, 1976. · Zbl 0332.10018 · doi:10.1007/BFb0079929
[14] S. Mac Lane, Homology , Die Grundlehren der mathematischen Wissenschaften, Bd. 114, Academic Press Inc., Publishers, New York, 1963. · Zbl 0133.26502
[15] M. S. Raghunathan, Discrete subgroups of Lie groups , Springer-Verlag, New York, 1972. · Zbl 0254.22005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.