×

zbMATH — the first resource for mathematics

Random matrix products and measures on projective spaces. (English) Zbl 0528.60028

MSC:
60F15 Strong limit theorems
60B15 Probability measures on groups or semigroups, Fourier transforms, factorization
15B52 Random matrices (algebraic aspects)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. L. Doob,Stochastic Processes, Wiley, New York, 1953.
[2] H. Furstenberg,Noncommuting random products, Trans. Am. Math. Soc.108 (1963), 377–428. · Zbl 0203.19102
[3] H. Furstenberg and H. Kesten,Products of random matrices, Ann. Math. Stat.31 (1960), 457–469. · Zbl 0137.35501
[4] H. Hennion,Loi des grands nombres et perturbations pour des produit reductibles de matrices aléatoires indépendantes, preprint, 1983.
[5] Y. Kifer,Perturbations of random matrix products, Z. Wahrscheinlichkeitstheor. Verw. Geb.61 (1982), 83–95. · Zbl 0479.60019
[6] Y. Kifer and E. Slud,Perturbations of random matrix products in a reducible case, inErgodic Theory and Dynamical Systems, to appear. · Zbl 0526.60012
[7] J. F. C. Kingman,Subadditive ergodic theory, Ann. Probab.1 (198?), 883–909. · Zbl 0311.60018
[8] V. I. Oseledec,A multiplicative ergodic theorem, Lyapunov characteristic numbers for dynamical systems. Trans. Mosc. Math. Soc.19 (1968), 197–221.
[9] M. S. Raghunathan,A proof of Oseledec’s multiplicative ergodic theorem, Isr. J. Math.32 (1979), 356–362. · Zbl 0415.28013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.