×

Extension principle and fuzzy-mathematical programming. (English) Zbl 0528.90059


MSC:

90C05 Linear programming
03E72 Theory of fuzzy sets, etc.
PDFBibTeX XMLCite
Full Text: EuDML

References:

[1] R. G. Dyson: Maximin programming and fuzzy-linear programming. J. Oper. Res. Soc. 31 (1980), 3, 283-287. · Zbl 0436.90106
[2] H. Leberling: On finding compromise solutions in multicriterial problems using the fuzzy-min-operator. Fuzzy Sets and Systems 6 (1981), 2, 105-118. · Zbl 0465.90081 · doi:10.1016/0165-0114(81)90019-1
[3] M. MareŇ°: How to handle fuzzy quantities. Kybernetika 13 (1977), 1, 23 - 40.
[4] C. V. Negoita, M. Sularia: On fuzzy-mathematical programming. Econom. Comput. Econom. Cybernet. Stud. Res. 9 (1976), 1, 26-34. · Zbl 0336.90060
[5] C. V. Negoita, A. D. Ralescu: On fuzzy environment in optimization. Econom. Comput. Econom. Cybernet. Stud. Res. 10 (1977), 1, 5-14. · Zbl 0378.90101
[6] E. Takeda, T. Nishida: Multiple criteria decision problems with fuzzy domination structures. Fuzzy Sets and Systems 3 (1980), 2, 123-136. · Zbl 0429.90073 · doi:10.1016/0165-0114(80)90050-0
[7] L. A. Zadeh: Fuzzy sets. Inform. and Control 8 (1965), 1, 338-353. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[8] H. J. Zimmermann: Fuzzy programming and linear programming with several obsective functions. Fuzzy Sets and Systems 1 (1978), 1, 45-55. · Zbl 0364.90065 · doi:10.1016/0165-0114(78)90031-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.