×

zbMATH — the first resource for mathematics

On the associated graded rings of parameter ideals in Buchsbaum rings. (English) Zbl 0529.13010

MSC:
13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.)
13A15 Ideals and multiplicative ideal theory in commutative rings
13H15 Multiplicity theory and related topics
13E05 Commutative Noetherian rings and modules
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Buchsbaum, D.A, Complexes in local ring theory, () · Zbl 0197.31603
[2] \scD. Eisenbud and S. Goto, Linear free resolutions and minimal multiplicity, to appear. · Zbl 0531.13015
[3] Goto, S, On Buchsbaum rings, J. algebra, 67, 272-279, (1980) · Zbl 0473.13009
[4] Goto, S, On the Cohen-macaulayfication of certain Buchsbaum rings, Nagoya math. J., 80, 107-116, (1980) · Zbl 0413.13012
[5] Goto, S, On Buchsbaum rings obtained by gluing, Nagoya math. J., 83, 123-135, (1981) · Zbl 0438.13021
[6] Goto, S, Buchsbaum rings with multiplicity 2, J. algebra, 74, 494-508, (1982) · Zbl 0479.13007
[7] Goto, S, Blowing-up characterization for local rings, ()
[8] \scS. Goto, Blowing-up characterization for local rings (unpublished).
[9] Goto, S, Buchsbaum rings of maximal embedding dimension, J. algebra, 76, 383-399, (1982) · Zbl 0482.13012
[10] Goto, S, Blowing-up of Buchsbaum rings, (), 140-162, (Commutative Algebra: Durham 1981)
[11] Goto, S; Shimoda, Y, On Rees algebras over Buchsbaum rings, J. math. Kyoto univ., 20, 691-708, (1980) · Zbl 0473.13010
[12] Goto, S; Watanabe, K, On graded rings. I, J. math. soc. Japan, 30, 179-213, (1978) · Zbl 0371.13017
[13] Hochster, M, Contracted ideals from integral extensions of regular rings, Nagoya math. J., 51, 25-43, (1973) · Zbl 0245.13012
[14] \scR. Kiehl, Beispiele von Buchsbaum-Ringen une -Moduln, preprint.
[15] Renschuch, B; Stückrad, J; Vogel, W, Weitere bemerkungen zu einem problem der schnittheorie une über ein mass von A. seidenberg für die imperfektheit, J. algebra, 37, 447-471, (1975) · Zbl 0335.14010
[16] Sally, J, On the associated graded ring of a local Cohen-Macaulay ring, J. math. Kyoto univ., 17, 19-21, (1977) · Zbl 0353.13017
[17] Sally, J, Numbers of generators of ideals in local rings, () · Zbl 0395.13010
[18] \scJ. Stückrad, P. Schenzel and W. Vogel, Theorie der Buchsbaum-Moduln, in preparation.
[19] Schenzel, P; Trung, N.V; Cuong, N.T, Verallgemeinerte Cohen-Macaulay-moduln, Math. nachr., 85, 57-73, (1978) · Zbl 0398.13014
[20] Stückrad, J, Über die kohomologische charakterizierung von Buchsbaum-moduln, Math. nachr., 95, 265-272, (1980) · Zbl 0458.13009
[21] Stückrad, J; Vogel, W, Eine verallgemeirerung der Cohen-Macaulay ringe und anwendungen auf ein problem der mutiplizitätstheorie, J. math. kyotot univ., 13, 513-528, (1973) · Zbl 0275.13028
[22] Stückrad; Vogel, W, Toward a theory of Buchsbaum singularities, Amer. J. math., 100, 727-746, (1978) · Zbl 0429.14001
[23] Suzuki, N, On the Koszul complex generated by a system of parameters for a Buchsbaum module, Bull. dept. gen. ed. shizuoka college of pharmacy, 8, 27-35, (1979)
[24] Suzuki, N, On a basic theorem for quasi-Buchsbaum modules, Bull. dept. gen. ed. shizuoka college of pharmacy, 11, (1982)
[25] \scN. Suzuki, Canonical duality for Buchsbaum modules, in preparation.
[26] Trung, N.V, Some criteria for Buchsbaum modules, Mh. math., 90, 331-337, (1980) · Zbl 0434.13007
[27] Valabrega, P; Valla, G, Form rings and regular sequences, Nagoya math. J., 72, 93-101, (1978) · Zbl 0362.13007
[28] Valla, G, On the symmetric and Rees algebras of an ideal, Manuscripta math., 30, 239-255, (1980) · Zbl 0439.13002
[29] Vogel, W, Über eine vermutung von D. A. Buchsbaum, J. algebra, 25, 106-112, (1973) · Zbl 0256.14023
[30] Schenzel, P, On Buchsbaum rings and their canonical modules, Teubner-texte zur math., 29, 65-77, (1980) · Zbl 0449.13007
[31] \scM. Brodmann, Kohomologische Eigenschaften von Aufblazungen in local Vollständigen Durchschnitten, preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.