×

zbMATH — the first resource for mathematics

On the Specht property and the basic rank of some products of group varieties. (English. Russian original) Zbl 0529.20016
Algebra Logic 20, 357-363 (1982); translation from Algebra Logika 20, 546-554 (1981).
MSC:
20E10 Quasivarieties and varieties of groups
08B05 Equational logic, Mal’tsev conditions
20F16 Solvable groups, supersolvable groups
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] A. Yu. Ol’shanskii, ”On the finite basis problem for groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,34, No. 3, 376–384 (1970).
[2] R. M. Bryant and M. F. Newman, ”Some finitely based varieties of groups,” Proc. London Math. Soc.,28, No. 2, 237–252 (1974). · Zbl 0278.20020 · doi:10.1112/plms/s3-28.2.237
[3] A. L. Shmel’kin, ”Wreath products and varieties of groups,” Izv. Akad. Nauk SSSR, Ser. Mat.,29, No. 1, 149–170 (1965). · Zbl 0135.04701
[4] G. Higman, ”Ordering by divisibility in abstract algebras,” Proc. London Math. Soc.,2, No. 7, 326–336 (1952). · Zbl 0047.03402 · doi:10.1112/plms/s3-2.1.326
[5] H. Neumann, Varieties of Groups, Ergeb. Math. Grenz. (N.F.), Band 37, Springer-Verlag, New York (1967). · Zbl 0149.26704
[6] G. Baumslag, ”On the residual nilpotence of some varietal products,” Trans. Am. Math. Soc.,109, No. 2, 357–365 (1963). · Zbl 0118.03501 · doi:10.1090/S0002-9947-1963-0155888-0
[7] Yu. V. Kuz’min, ”Representations of finite groups by automorphisms of nilpotent almost spaces and automorphisms of nilpotent groups,” Sib. Mat. Zh.,13, No. 1, 107–117 (1972). · Zbl 0229.20007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.