zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impedance profile inversion via the first transport equation. (English) Zbl 0529.73029

74J20Wave scattering (solid mechanics)
74J25Inverse problems (waves in solid mechanics)
74J15Surface waves (solid mechanics)
Full Text: DOI
[1] Gerver, M.: Geophys J. Roy. astronom. Soc.. 21, 337-357 (1970)
[2] Ware, J.; Aki, K.: Continuous and discrete inverse-scattering problems in a stratified elastic medium: I, plane waves at normal incidence. J. acoust. Soc. amer. 45, 911-921 (1969) · Zbl 0197.23102
[3] Berryman, J.: Inverse methods for elastic waves in stratified media. Bell labs preprint (1979)
[4] Carroll, R.; Santosa, F.: Scattering techniques for a one-dimensional inverse problem in geophysics. Math. meth. Appl. sci. (1980) · Zbl 0456.73087
[5] Bamberger, A.; Chavent, G.; Lailly, P.: About the stability of the inverse problem in 1-D wave equations--application to the interpretation of seismic profiles. Appl. math. Optim. 5, 1-47 (1979) · Zbl 0407.35073
[6] Symes, W.: Stable solution of the inverse reflection problem for a smoothly stratified elastic medium. SIAM J. Math. anal. 12, No. 3 (1981) · Zbl 0482.73025
[7] Symes, W.: Inverse boundary value problems and a theorem of Gelfand and levitan. J. math. Anal. appl. 71, No. 1, 379-402 (1979) · Zbl 0425.35092
[8] W. Symes, Numerical stability in an inverse scattering problem, SIAM J. Numer. Anal. 17 (5) 707--732. · Zbl 0463.65064
[9] Symes, W.: Invertibility of the trace operator and local energy decay for the string with BV coefficient. (1980)
[10] Symes, W.: Linearization stability of 2-D and 3-D acoustic imaging problems. (1983)
[11] Symes, W.; Driessel, K.: Fast and accurate algorithms for 1-D impedance profile reconstruction. (1981)
[12] Courant, R.; Hilbert, D.: Methods of mathematical physics. (1962) · Zbl 0099.29504
[13] Hadamard, J.: Le problème de Cauchy et LES équations aux derivées partielles linéaires hyperboliques. (1952)
[14] Gel’fand, I. M.; Levitan, B. M.: On the determination of a differential equation from its spectral function. Trans. amer. Math. soc. 1, No. 2, 253-304 (1955) · Zbl 0066.33603