×

A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow. (English) Zbl 0529.76034


MSC:

76D05 Navier-Stokes equations for incompressible viscous fluids
76E99 Hydrodynamic stability
76M99 Basic methods in fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Orszag, S.A.; Kells, L.C., J. fluid mech., 96, 159-205, (1980)
[2] Kleiser, L.; Schumann, U., (), 165-173, Braunschweig
[3] Patera, A.T.; Orszag, S.A., J. fluid. mech., 112, 467-474, (1981)
[4] Marcus, P.; Patera, A.; Orszag, S.A., (), to be published
[5] Moin, P.; Kim, J., J. fluid mech., 118, 341-377, (1982)
[6] Moin, P.; Kim, J., J. comput. phys., 35, 381-392, (1980)
[7] Leonard, A., Bull. amer. phys. soc., 26, 1247, (1981)
[8] Leonard, A.; Wray, A., (), to be published
[9] Teman, R., Navier-Stokes equations theory and numerical analysis, (1979), North-Holland Amsterdam/New York/Oxford · Zbl 0406.35053
[10] Patera, A.T.; Orszag, S.A., ()
[11] Stuart, J.T., Hydrodynamic stability, (), Chap. 9 · Zbl 0332.35019
[12] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods, (), No. 26 · Zbl 0561.76076
[13] Fox, L.; Parker, I.B., Chebychev polynomials in numerical analysis, (1968), Oxford Univ. Press London/New York · Zbl 0153.17502
[14] Lee, L.H.; Reynolds, W.C., Quart. J. mech. appl. math., 20, 1, (1967)
[15] Coles, D., J. fluid. mech., 21, 385-425, (1965)
[16] Fenstermacher, P.R.; Swinney, H.L.; Gollub, J.P., J. fluid mech., 94, 103-128, (1979)
[17] Meyer, K.A., A two-dimensional, time-dependent numerical study of rotational Couette flow, ()
[18] Donnelly, R.J.; Simon, N.J., J. fluid. mech., 7, 401-418, (1960)
[19] DiPrima, R.C.; Eagles, P.M., Phys. fluids, 20, 171-175, (1977)
[20] Jones, C.A., J. fluid mech., 102, 249-261, (1981)
[21] Mansour, N.N.; Moin, P.; Reynolds, W.C.; Ferziger, J.H., (), 379-385
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.