Moser, R. D.; Moin, P.; Leonard, A. A spectral numerical method for the Navier-Stokes equations with applications to Taylor-Couette flow. (English) Zbl 0529.76034 J. Comput. Phys. 52, 524-544 (1983). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 57 Documents MSC: 76D05 Navier-Stokes equations for incompressible viscous fluids 76E99 Hydrodynamic stability 76M99 Basic methods in fluid mechanics Keywords:spectral method; plane channel; between concentric cylinders; boundary conditions; continuity equation; banded matrices solved at each time step; reduction in computer memory requirements; Taylor-Couette flow with axisymmetric Taylor vortices and wavy vortices PDF BibTeX XML Cite \textit{R. D. Moser} et al., J. Comput. Phys. 52, 524--544 (1983; Zbl 0529.76034) Full Text: DOI OpenURL References: [1] Orszag, S.A.; Kells, L.C., J. fluid mech., 96, 159-205, (1980) [2] Kleiser, L.; Schumann, U., (), 165-173, Braunschweig [3] Patera, A.T.; Orszag, S.A., J. fluid. mech., 112, 467-474, (1981) [4] Marcus, P.; Patera, A.; Orszag, S.A., (), to be published [5] Moin, P.; Kim, J., J. fluid mech., 118, 341-377, (1982) [6] Moin, P.; Kim, J., J. comput. phys., 35, 381-392, (1980) [7] Leonard, A., Bull. amer. phys. soc., 26, 1247, (1981) [8] Leonard, A.; Wray, A., (), to be published [9] Teman, R., Navier-Stokes equations theory and numerical analysis, (1979), North-Holland Amsterdam/New York/Oxford · Zbl 0406.35053 [10] Patera, A.T.; Orszag, S.A., () [11] Stuart, J.T., Hydrodynamic stability, (), Chap. 9 · Zbl 0332.35019 [12] Gottlieb, D.; Orszag, S.A., Numerical analysis of spectral methods, (), No. 26 · Zbl 0561.76076 [13] Fox, L.; Parker, I.B., Chebychev polynomials in numerical analysis, (1968), Oxford Univ. Press London/New York · Zbl 0153.17502 [14] Lee, L.H.; Reynolds, W.C., Quart. J. mech. appl. math., 20, 1, (1967) [15] Coles, D., J. fluid. mech., 21, 385-425, (1965) [16] Fenstermacher, P.R.; Swinney, H.L.; Gollub, J.P., J. fluid mech., 94, 103-128, (1979) [17] Meyer, K.A., A two-dimensional, time-dependent numerical study of rotational Couette flow, () [18] Donnelly, R.J.; Simon, N.J., J. fluid. mech., 7, 401-418, (1960) [19] DiPrima, R.C.; Eagles, P.M., Phys. fluids, 20, 171-175, (1977) [20] Jones, C.A., J. fluid mech., 102, 249-261, (1981) [21] Mansour, N.N.; Moin, P.; Reynolds, W.C.; Ferziger, J.H., (), 379-385 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.