Olenko, A. Ya. A Tauberian theorem for the fields with \(OR\) spectrum. II. (Ukrainian, English) Zbl 1150.60027 Teor. Jmovirn. Mat. Stat. 74, 81-97 (2006); translation in Theory Probab. Math. Stat. 74, 93-111 (2007). Homogeneous isotropic random fields with \(OR\) spectrum are considered. The author proves Abelian and Tauberian theorems giving connections of local behaviour of spectral function and weighted integral functionals of random fields. Representation of weighted function in the form of Hankel transforms and functional series are presented. Some examples are proposed.[For part I, cf. ibid. Teor. Jmovirn. Mat. Stat. 73, 120–133 (2005); translation in Theory Probab. Math. Stat. 73, 135–149 (2006; Zbl 1115.60056).] Reviewer: Aleksandr D. Borisenko (Kyïv) Cited in 1 ReviewCited in 3 Documents MSC: 60G60 Random fields 60F05 Central limit and other weak theorems 62E20 Asymptotic distribution theory in statistics Keywords:Tauberian theorem; fields with \(OR\) spectrum; Abelian theorem; homogeneous fields; isotropic fields; spectral function; Hankel transform Citations:Zbl 1115.60056 PDFBibTeX XMLCite \textit{A. Ya. Olenko}, Teor. Ĭmovirn. Mat. Stat. 74, 81--97 (2006; Zbl 1150.60027); translation in Theory Probab. Math. Stat. 74, 93--111 (2007) Full Text: Link