zbMATH — the first resource for mathematics

On Besselian Schauder bases in \(\ell_ p(E)\). (English) Zbl 0531.46009
By complex interpolation and tensor products, Schauder bases are constructed of the Banach sequence spaces \(\ell_ p(E)\). In a general result, we study the Besselian property of the basis, and if E is assumed to be the \(L_ p\) (Lebesgue) and \(S_ p\) (von Neumann-Schatten) space, we obtain inequalities for the coefficient functionals associated to the basis which generalise other results given by Hausdorff-Young and Gohberg-Marcus. Finally, we construct non-Besselian and conditional bases of \(\ell_ p(E)\).
46B15 Summability and bases; functional analytic aspects of frames in Banach and Hilbert spaces
47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.)
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46E40 Spaces of vector- and operator-valued functions
Full Text: DOI EuDML
[1] Arazy, J.: Some remarks on interpolation theorems and the boundness of the triangular projection in unitary matrix spaces. Integr. Equ. and Oper. Th.1, 453–495 (1978). · Zbl 0395.47030 · doi:10.1007/BF01682937
[2] Fugarolas, M. A., Cobos, F.: On Schauder Bases in the Lorentz Operator Ideal. J. Math. Anal. Appl.95, 235–242 (1983). · Zbl 0524.46007 · doi:10.1016/0022-247X(83)90146-4
[3] Gohberg, I. C., Marcus, A. S.: Some relations between eigenvalues and matrix elements of linear operators. Amer. Math. Soc. Transl. Series 2,52, 201–216 (1966).
[4] Grothendieck, A.: Produits tensoriels topologiques et espaces nucléaires. Providence, R. I.: Amer. Math. Soc. 1955.
[5] Leonard, I. E.: Banach Sequence Spaces. J. Math. Anal. Appl.54, 245–265 (1976). · Zbl 0343.46010 · doi:10.1016/0022-247X(76)90248-1
[6] Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces II. Berlin-Heidelberg-New York: Springer. 1979. · Zbl 0403.46022
[7] Pietsch, A.: Operator Ideals. Amsterdam-New York-Oxford: North-Holland. 1980. · Zbl 0434.47030
[8] Singer, I.: Bases in Banach Spaces I. Berlin-Heidelberg-New York: Springer. 1970. · Zbl 0198.16601
[9] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators. Amsterdam-New York-Oxford: North Holland. 1978. · Zbl 0387.46032
[10] Zygmund, A.: Trigonometric Series, Vol. I and II. 2nd Ed. Cambridge-London-New York-Melbourne: Cambridge Univ. Press. 1977. · Zbl 0367.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.