×

On submanifolds of a Riemannian manifold M containing a hypersurface which is totally geodesic in M and applications. (English) Zbl 0531.53001

The author studies submanifolds of a Riemannian manifold M containing a hypersurface which is totally geodesic in M. As an application he obtains some main results and formulas about non-developable generalized ruled surfaces in Euclidean space.
Reviewer: E.Teufel

MSC:

53A07 Higher-dimensional and -codimensional surfaces in Euclidean and related \(n\)-spaces
53B25 Local submanifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] B. Y. Chen, Geometry of submanifolds. Marcel Dekker, New York 1973. · Zbl 0262.53036
[2] W. Degen, Geometrische Deutung des Dralls eines Axoids. Arch, der Math. 30, (1978) 440–442. · Zbl 0391.53003 · doi:10.1007/BF01226082
[3] H. Frank and O. Giering, Verallgemeinerte Regelflächen. Math. Z. 150, (1976) 261–271. · Zbl 0331.53011 · doi:10.1007/BF01221150
[4] H. Frank and O. Giering, Parallelität der Erzeugenden und Fasern verallgemeinerter Regelflächen. J. of Geometry, vol. 12/2, (1979) 139–145. · Zbl 0387.53003 · doi:10.1007/BF01918222
[5] H. Frank and O. Giering, Zur Schnittkrummung verallgemeinerter Regelflächen. Arch, der Math. 32, (1979) 86–91. · Zbl 0388.53004 · doi:10.1007/BF01238472
[6] L. Granat, Metrické vlostnosti nerozvinutelnyck monosystémii Vn+1u eukleidovskem prostoru E2n+1. Cas. pro pest. mat. 91, (1966) 412–422.
[7] L. Granat, Metrische Eigenschaften der nichtabwickelbaren Monosysteme der Dimension n + 1 im Euklidischen Räume E2n+1. Comment. Math. Univ. Carolinae 7(1), 113–116 (1966). · Zbl 0163.15903
[8] L. Granat, Metrische Eigenschaften der einparametrigen Systeme von linearen Räumen der Dimension k im Euklidischen Räume En. Cas. pro pest. mat. 93, (1968) 32–45. · Zbl 0168.42404
[9] L. Granat, Metrische Eigenschaften der einparametrigen Systeme von linearen Räumen der Dimension k im Euklidischen Räume En. Math. Univ. Carolina 8(2), 267–271 (1967). · Zbl 0168.42403
[10] M. Juza, Ligne de striction sur une généralisation à plusieurs dimensions d’une surface réglée. Cas. pro pest. mat. a fys. 12(87), 243–250 (1962). · Zbl 0116.13602
[11] M. Juza, Le système complete d’invariants d’un monosystème à trois dimensions dans l’espace euclidien à cinq dimensions. Cas. pro pest. mat. a fys. 12(87), 401–403 (1962). · Zbl 0114.37001
[12] A. Juzova, Eukleidovské invarianty monosystému. Cas. pro pest. mat. 88, (1963) 1–13.
[13] S. Kobayashi and K. Nomizu, Foundations of differential geometry (vol. 2), New York, Wiley-Interscience (1969). · Zbl 0175.48504
[14] H. R. Müller, Zur Bewegungsgeometrie in Räumen höherer Dimension, Monatsh. für Math. (70), 47–57 (1966). · Zbl 0141.37902 · doi:10.1007/BF01306999
[15] H. R. Müller, Über die Striktionslinien von einparametrigen Scharen linearen Räume. J. of Geometry 8, (1976) 1–7. · Zbl 0337.53002 · doi:10.1007/BF01917421
[16] M. Spivak, A comprehensive introduction to differential geometry (vol. 4). Publish or Perish Inc., Boston (1970). · Zbl 0202.52001
[17] C. Thas, Een (lokale) Studie van de (m + 1)-dimensionale variëteiten van de n-dimensionale euklidische ruimte Rn (nm + 1 en m), beschreven door een ééndimensionale familie van m-dimensionale lineaire ruimten (+ English summary). Meded. Kon. Acad. Wet., Lett., Sch. K. van België, jaargang XXXVI, nr. 4, 83 pp. (1974).
[18] C. Thas, Parameters of distribution of (n +1)-dimensional monosystems in the euclidean space R2n+1. Czechosl. Math. J. 28(103), 13–24 (1978). · Zbl 0383.53005
[19] C. Thas, A Gauss map on hypersurfaces of submanifolds in euclidean spaces. J. Korean Math. Soc. 16, (1979) 17–27. · Zbl 0433.53014
[20] C. Thas, A note on a class of submanifolds of a space form Rm(k). Soochow J. Math. 4, (1978) 29–38. · Zbl 0413.53010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.