zbMATH — the first resource for mathematics

Pirogov-Sinai theory with new contours for symmetric models. (English) Zbl 1206.82005
By using a new definition of contour different from that of Pirogov-Sinai, the authors can refer to Peierls argument to derive a new simple proof of the Pigorov-Sinai result related to the non-uniqueness of Gibbs measure for symmetric models,
82B05 Classical equilibrium statistical mechanics (general)
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
60K35 Interacting random processes; statistical mechanics type models; percolation theory
05C05 Trees
Full Text: DOI arXiv
[1] DOI: 10.1023/B:JOSS.0000037243.48527.e3 · Zbl 1142.82328 · doi:10.1023/B:JOSS.0000037243.48527.e3
[2] DOI: 10.1023/B:JOSS.0000013970.66907.b9 · Zbl 1129.82304 · doi:10.1023/B:JOSS.0000013970.66907.b9
[3] Ganikhodjaev N., Theor. Math. Phys. 149 pp 244–
[4] DOI: 10.1007/s002200050204 · Zbl 0888.60081 · doi:10.1007/s002200050204
[5] Minlos R. A., University lecture series 19, in: Introduction to Mathematical Statistical Physics (2000)
[6] DOI: 10.1017/S0305004100019174 · Zbl 0014.33604 · doi:10.1017/S0305004100019174
[7] DOI: 10.1007/BF01040127 · doi:10.1007/BF01040127
[8] Rozikov U. A., Siber. Adv. Math. 16 pp 121–
[9] DOI: 10.1007/s11005-004-5117-2 · Zbl 1076.82509 · doi:10.1007/s11005-004-5117-2
[10] DOI: 10.1007/s10955-005-8029-3 · Zbl 1149.82008 · doi:10.1007/s10955-005-8029-3
[11] Sinai Ya. G., Theory of Phase Transitions: Rigorous Results (1982)
[12] DOI: 10.1007/BF01212295 · doi:10.1007/BF01212295
[13] Zahradnik M., Rendiconti Math. Serie VII. 18 pp 411–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.