×

Implementation of the LANS-\(\alpha\) turbulence model in a primitive equation ocean model. (English) Zbl 1220.86001

Summary: This paper presents the first numerical implementation and tests of the Lagrangian-averaged Navier-Stokes-alpha (LANS-\(\alpha \)) turbulence model in a primitive equation ocean model. The ocean model with which we work is the Los Alamos Parallel Ocean Program (POP); we refer to POP and our implementation of LANS-\(\alpha \) as POP-\(\alpha \).
Two versions of POP-\(\alpha \) are presented: the full POP-\(\alpha \) algorithm is derived from the LANS-\(\alpha \) primitive equations, but requires a nested iteration that makes it too slow for practical simulations; a reduced POP-\(\alpha \) algorithm is proposed, which lacks the nested iteration and is two to three times faster than the full algorithm. The reduced algorithm does not follow from a formal derivation of the LANS-\(\alpha \) model equations. Despite this, simulations of the reduced algorithm are nearly identical to the full algorithm, as judged by globally averaged temperature and kinetic energy, snapshots of temperature and velocity fields, and temperature variance. Both POP-\(\alpha \) algorithms can run stably with longer timesteps than standard POP.
Comparison of implementations of full and reduced POP-\(\alpha \) algorithms are made within an idealized test problem that captures some aspects of the Antarctic Circumpolar Current, a problem in which baroclinic instability is prominent. Both POP-\(\alpha \) algorithms produce statistics that resemble higher-resolution simulations of standard POP.
A linear stability analysis shows that both the full and reduced POP-\(\alpha \) algorithms benefit from the way the LANS-\(\alpha \) equations take into account the effects of the small scales on the large. Both algorithms (1) are stable; (2) have an effective Rossby deformation radius that is larger than the deformation radius of the unmodeled equations; and (3) reduce the propagation speeds of the modeled Rossby and gravity waves relative to the unmodeled waves at high wave numbers.

MSC:

86A05 Hydrology, hydrography, oceanography
76D05 Navier-Stokes equations for incompressible viscous fluids
76U05 General theory of rotating fluids

Software:

POP
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bryan, F. O.; Hecht, M. W.; Smith, R. D., Resolution convergence and sensitivity studies with North Atlantic circulation models. Part I: The Western Boundary Current system, Ocean Model., 16, 141-159 (2007)
[2] Gent, P. R.; McWilliams, J. C., Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 1, 150-155 (1990)
[3] Griffies, S. M.; Gnanadesikan, A.; Pacanowski, R. C.; Larichev, V. D.; Dukowicz, J. K.; Smith, R. D., Isoneutral diffusion in a \(z\)-coordinate ocean model, J. Phys. Oceanogr., 28, 5, 805-830 (1998)
[4] Griffies, S., The Gent-McWilliams skew-flux, J. Phys. Oceanogr., 28, 831-841 (1998)
[5] Visbeck, M.; Marshall, J.; Haine, T.; Spall, M., Specification of eddy transfer coefficients coarse-resolution ocean circulation models, J. Phys. Oceanogr., 27, 381-402 (1997)
[6] Solomon, H., On the representation of isentropic mixing in ocean circulation models, J. Phys. Oceanogr., 1, 3, 233-234 (1971)
[7] Redi, M. H., Oceanic isopycnal mixing by coordinate rotation, J. Phys. Oceanogr., 12, 10, 1154-1158 (1982)
[8] Cox, M., Isopycnal diffusion in a \(z\)-coordinate ocean model, Ocean Model., 74, 1-5 (1987)
[9] Boville, B. A.; Gent, P. R., The NCAR climate system model, version one, J. Clim., 11, 1115-1130 (1998)
[10] Veronis, G., The role of models in tracer studies. The role of models in tracer studies, Numerical Models of the Ocean Circulation (1975), National Academy of Sciences
[11] Böning, C. W.; Holland, W. R.; Bryan, F. O.; Danabasoglu, G.; McWilliams, J. C., An overlooked problem in model simulations of the thermohaline circulation and heat-transport in the Atlantic Ocean, J. Clim., 8, 3, 515-523 (1995)
[12] Holm, D. D., Fluctuation effects on 3D Lagrangian mean and Eulerian mean fluid motion, Physica D, 133, 215-269 (1999) · Zbl 1194.76062
[13] Aref, H., Fluid dynamics: order in chaos, Nature, 401, 756-758 (1999)
[14] Eckart, C., An analysis of the stirring and mixing processes in incompressible fluids, J. Marine Res., 7, 265 (1948)
[15] Foias, C.; Holm, D. D.; Titi, E. S., The Navier-Stokes-alpha model of fluid turbulence, Phys. D Nonlinear Phenom., 152, 505-519 (2001) · Zbl 1037.76022
[16] Andrews, D. G.; McIntyre, M. E., An exact theory of nonlinear waves on a Lagrangian-mean flow, J. Fluid Mech., 89, 609-646 (1978) · Zbl 0426.76025
[17] Holm, D. D.; Marsden, J. E.; Ratiu, T. S., Euler-Poincaré models of ideal fluids with nonlinear dispersion, Phys. Rev. Lett., 80, 4173-4176 (1998)
[18] Chen, S.; Foias, C.; Holm, D. D.; Olson, E.; Titi, E. S.; Wynne, S., The Camassa-Holm equations and turbulence, Phys. D Nonlinear Phenom., 133, 49-65 (1999) · Zbl 1194.76069
[19] Chen, S.; Holm, D. D.; Margolin, L. G.; Zhang, R., Direct numerical simulations of the Navier-Stokes alpha model, Phys. D Nonlinear Phenom., 133, 66-83 (1999) · Zbl 1194.76080
[20] Marsden, J. E.; Shkoller, S., Global well-posedness for the Lagrangian-averaged Navier-Stokes (LANS-alpha) equations on bounded domains, Phil. Trans. Roy. Soc. A, 359, 1449-1468 (2001) · Zbl 1006.35074
[21] D.D. Holm, C. Jeffery, S. Kurien, D. Livescu, M.A. Taylor, B.A. Wingate, The LANS-alpha model for computing turbulence: Origins, results, and open problems, Los Alamos Science 29 (2005) 152-172, available at <http://la-science.lanl.gov/lascience29.shtml; D.D. Holm, C. Jeffery, S. Kurien, D. Livescu, M.A. Taylor, B.A. Wingate, The LANS-alpha model for computing turbulence: Origins, results, and open problems, Los Alamos Science 29 (2005) 152-172, available at <http://la-science.lanl.gov/lascience29.shtml
[22] Germano, M.; Piomelli, U.; Moin, P.; Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, 3, 1760 (1991) · Zbl 0825.76334
[23] Meneveau, C.; Katz, J., Scale-invariance and turbulence models for large-eddy simulation, Ann. Rev. Fluid Mech., 31, 1-32 (2000) · Zbl 0988.76044
[24] Geurts, B. J.; Holm, D. D., Alpha-modeling strategy for LES of turbulent mixing. Alpha-modeling strategy for LES of turbulent mixing, Turbulent Flow Computation (2002), Kluwer Academic Publishers, pp. 237-278 (Chapter 7) · Zbl 1087.76051
[25] Holm, D. D.; Nadiga, B. T., Modeling mesoscale turbulence in the barotropic double-gyre circulation, J. Phys. Oceanogr., 33, 11, 2355-2365 (2003)
[26] Wingate, B. A., The maximum allowable time step for the shallow water alpha model and its relation to time-implicit differencing, Mon. Weather Rev., 132, 12, 2719-2731 (2004)
[27] Holm, D. D.; Wingate, B. A., Baroclinic instabilities of the two-layer quasigeostrophic alpha model, J. Phys. Oceanogr., 35, 7, 1287-1296 (2005)
[28] D. Holm, J. Marsden, T. Ratiu, The Euler-Poincare equations in geophysical fluid dynamics, Isaac Newton Institute Proceedings, 1998.; D. Holm, J. Marsden, T. Ratiu, The Euler-Poincare equations in geophysical fluid dynamics, Isaac Newton Institute Proceedings, 1998.
[29] Geurts, B. J.; Holm, D. D., Regularization modeling for large-eddy simulation, Phys. Fluids, 15, 1, L13-L16 (2003)
[30] Petersen, M. R.; Hecht, M. W.; Wingate, B. A., Efficient form of the LANS-α turbulence model in a primitive-equation ocean model, J. Comp. Phys., 227, 5717-5735 (2008) · Zbl 1220.86002
[31] M.W. Hecht, D.D. Holm, M.R. Petersen, B.A. Wingate, LANS-Α; and Leray turbulence parameterizations in primitive equation ocean modeling, J. Phys. A (submitted for publication).; M.W. Hecht, D.D. Holm, M.R. Petersen, B.A. Wingate, LANS-Α; and Leray turbulence parameterizations in primitive equation ocean modeling, J. Phys. A (submitted for publication). · Zbl 1325.76086
[32] Smith, R. D.; Dukowicz, J. K.; Malone, R. C., Parallel ocean general circulation modeling, Physica D, 60, 38-61 (1992) · Zbl 0779.76064
[33] W.D. Collins, coauthors, The community climate system model version 3 (CCSM3), J. Climate 19 (2006) 2122-2143.; W.D. Collins, coauthors, The community climate system model version 3 (CCSM3), J. Climate 19 (2006) 2122-2143.
[34] Dukowicz, J. K.; Smith, R. D., Implicit free-surface method for the Bryan-Cox-Semtner ocean model, J. Geophys. Res., 99, 7991-8014 (1994)
[35] R. Smith, P. Gent, Reference manual for the Parallel Ocean Program (POP), see <http://climate.lanl.gov/source/projects/climate/Models/POP; R. Smith, P. Gent, Reference manual for the Parallel Ocean Program (POP), see <http://climate.lanl.gov/source/projects/climate/Models/POP
[36] Geurts, B. J.; Holm, D. D., Leray and LANS-α modeling of turbulent mixing, J. Turbulence, 7, 10 (2006) · Zbl 1273.76139
[37] Bryan, K., Accelerating the convergence to equilibrium of ocean-climate models, J. Phys. Oceanogr., 14, 4, 666-673 (1984)
[38] Karsten, R.; Jones, H.; Marshall, J., The role of eddy transfer in setting the stratification and transport of a circumpolar current, J. Phys. Oceanogr., 32, 39-54 (2002)
[39] Henning, C. C.; Vallis, G. K., The effects of mesoscale eddies on the stratification and transport of an ocean with a circumpolar channel, J. Phys. Oceanogr., 35, 880-896 (2005)
[40] Holton, J. R., An Introduction to Dynamic Meteorology (1992), Academic Press
[41] Chen, S.; Foias, C.; Holm, D. D.; Olson, E.; Titi, E. S.; Wynne, S., Camassa-Holm equations as a closure model for turbulent channel and pipe flow, Phys. Rev. Lett., 81, 5338-5341 (1998) · Zbl 1042.76525
[42] Zhao, H.; Mohseni, K., A dynamic model for the Lagrangian-averaged Navier-Stokes-\(α\) equations, Phys. Fluids, 17, 5106 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.