zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Inequalities for ultraspherical polynomials and the gamma function. (English) Zbl 0532.33007
Der Verf. beweißt mit elementaren Mitteln für die Gegenbauerschen Polynome $P\sb n\sp{(\lambda)}$ die Abschätzung $$ (\sin \theta)\sp{\lambda}\vert P\sb n\sp{(\lambda)}(\cos \theta)\vert<2\sp{1- \lambda}/\Gamma(\lambda)(n+\lambda)\sp{1-\lambda},$$ $$0\le \theta \le \pi,\quad 0<\lambda<1,\quad n\in N.$$ Diese Abschätzung ist besser als {\it G. Szegö’s} Ungleichung [Orthogonal polynomials (1959; Zbl 0089.275)], wo $n\sp{1-\lambda}$ statt $(n+\lambda)\sp{1-\lambda}$ steht. Einige Abschätzungen für $\Gamma(n+\lambda)/\Gamma(n+1)$ werden betrachtet.
Reviewer: E.Riekstiņš

33C55Spherical harmonics
33B15Gamma, beta and polygamma functions
Full Text: DOI
[1] Antonov, V. A.; Holševnikov, K. V.: An estimate of the remainder in the expansion of the generating function for the Legendre polynomials (Generalization and improvement of Bernstein’s inequality). Vestnik leningrad univ. Math. 13, 163-166 (1981)
[2] Gautschi, W.: Some elementary inequalities relating to the gamma and incomplete gamma function. J. math. Phys. 38, 77-81 (1959) · Zbl 0094.04104
[3] Kazarinoff, D. K.: On wallis’ formula. Edinburgh math. Notes no. 40, 19-21 (1956) · Zbl 0072.28401
[4] D. Kershaw, Some extensions of Gautschi’s inequalities for the gamma function, Math. Comp., in press. · Zbl 0536.33002
[5] Lebedev, N. N.: Special functions and their applications. (1965) · Zbl 0131.07002
[6] Lorch, L.: Alternative proof of a sharpened form of Bernstein’s inequality for Legendre polynomials. Appl. anal. 14, 237-240 (1983) · Zbl 0505.33007
[7] Szegö, G.: Orthogonal polynomials. Colloquium publications 23 (1975) · Zbl 0305.42011
[8] Watson, G. N.: A note on gamma functions. Edinburgh math. Notes no. 41, 7-9 (1959) · Zbl 0103.29601