×

Bound states and propagating states for time-dependent Hamiltonians. (English) Zbl 0532.47007

The definition of bound states and propagating states for quantum mechanical time-dependent Hamiltonians are suggested. The authors give a geometrical characterization of the above states and generalize many ”time-independent results” to the time-dependent case, e.g. a theorem of Ruelle. Most results concern the time-periodic case. The constructions for the Schrödinger operators are studied by D. R. Yafaev [see e.g. Mat. Sb., Nov. Ser. 118(160), 262-279 (1982; Zbl 0492.35059)].
Reviewer: M.A.Perelmuter

MSC:

47A40 Scattering theory of linear operators
81U05 \(2\)-body potential quantum scattering theory
35P25 Scattering theory for PDEs

Citations:

Zbl 0492.35059
PDF BibTeX XML Cite
Full Text: Numdam EuDML

References:

[1] W.O. Amrein , V. Georgescu , On the characterization of bound states and scattering states in Quantum Mechanics , Helv. Phys. Acta , t. 46 , 1973 , p. 635 - 657 . MR 363267
[2] V. Enss , Geometric methods in spectral and scattering theory of Schrödinger operators , in Rigorous Atomic and Molecular Physics , G. Velo and A. S. Wightman eds., Plenum , New York , 1981 . · Zbl 0498.60097
[3] V. Enss , Propagation Properties of Quantum Scattering States , J. Func. Anal. , t. 52 , 1983 , p. 219 - 251 . MR 707205 | Zbl 0543.47009 · Zbl 0543.47009
[4] F. Gesztesy , H. Mitter , A note on quasi periodic states , J. Phys. A , t. 14 , 1981 , L79 - L85 . MR 609823
[5] G.A. Hagedorn , An anolog of the Rage theorem for the impact parameter approximation to three particle scattering , Ann. Inst. H. Poincaré , t. 38 , 1983 , p. 59 - 68 . Numdam | MR 700700 | Zbl 0517.47009 · Zbl 0517.47009
[6] G.H. Hardy , E.M. Wright , An introduction to the theory of numbers , Clarendon , Oxford , 1979 . MR 568909 | Zbl 0423.10001 · Zbl 0423.10001
[7] J. Howland , Scattering states of Schrödinger operators periodic in time , preprint Univ. Virginia , 1979 . · Zbl 0444.47010
[8] J. Howland , Complex scaling of AC Stark Hamiltonians , J. Math. Phys. , t. 24 , 1983 , p. 1240 - 1244 . MR 702107
[9] D.B. Pearson , An example in potential scattering illustrating the breakdown of asymptotic completeness , Comm. Math. Phys. , t. 40 , 1975 , p. 125 - 146 . Article | MR 363285
[10] M. Reed , B. Simon , Methods of modern Mathematical Physics , t. I - IV , Academic Press , New York , 1975-1979 .
[11] D. Ruelle , A remark on bound states in potential scattering theory , Nuovo Cim. , t. 59 A, 1969 , p. 655 - 662 . MR 246603
[12] W.R. Salzmann , Exact semiclassical solution for the time evolution of a quantum-mechanical system in a circularly polarized monochromatic driving field , Chem. Phys. Lett. , t. 25 , 1974 , p. 302 - 304 .
[13] V.I. Smirnov , Lehrgang der Höheren Mathematik , Dt. Verl. der Wissenschaften , Berlin , 1973 .
[14] K. Veselić , On the characterisation of the bound and the scattering states for time dependent Hamiltonians , University of Dortmund preprint, 1979 .
[15] K. Yajima , Resonances for the AC-Stark effect , Commun. Math. Phys. , t. 87 , 1982 , p. 331 - 352 . Article | MR 682111 | Zbl 0538.47010 · Zbl 0538.47010
[16] K. Yajima , H. Kitada , Bound States and scattering states for time periodic Hamiltonians , Ann. Inst. H. Poincaré , t. 39 , 1983 , p. 145 - 157 . Numdam | MR 722683 | Zbl 0544.35073 · Zbl 0544.35073
[17] H. Kitada , Time decay of the high energy part of the solution for a Schrödinger equation , preprint Univ. Tokyo , 1982 . MR 743522 · Zbl 0508.35079
[18] Multiphoton bibliography , J. H. Eberly et al. eds., Univ. of Colorado & Rochester , yearly.
[19] G. Tomšič , Homogeneous operators , Studia Math. , t. 51 , 1974 , p. 1 - 5 . Article | MR 358415 · Zbl 0255.47039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.