Gross, Benedict H.; Harris, Joe Real algebraic curves. (English) Zbl 0533.14011 Ann. Sci. Éc. Norm. Supér. (4) 14, 157-182 (1981). This is an exhaustive study of the action of the complex conjugation on complex algebraic curves that are defined by real polynomials. The complex conjugation defines an involution of these real curves. This involution defines an action on the symmetric powers of the curve and on the Picard scheme of the curve. The authors study that action and apply it to real theta-characteristics. They show as well how the topological invariants of a real curve X are determined by the action of the complex conjugation on the group \(H_ 1(X({\mathbb{C}}),{\mathbb{Z}}/2)\). This question was also considered by H. Jaffee [Topology 19, 81-87 (1980; Zbl 0426.14013)]. Real hyperelliptic curves, real plane curves and real trigonal curves are considered as examples of the general theory. A topological argument leads to an interesting observation: entire components of the real moduli contain no hyperelliptic curves once the genus is at least 4. The paper ends with remarks on real moduli and with a real form of the Torelli theorem which was also proved independently by R. Silhol [see e.g. Math. Z. 181, 345-364 (1982; Zbl 0492.14015)]. Reviewer: M.Seppälä Cited in 6 ReviewsCited in 79 Documents MSC: 14H10 Families, moduli of curves (algebraic) 14H25 Arithmetic ground fields for curves 14Pxx Real algebraic and real-analytic geometry 14H40 Jacobians, Prym varieties 14K15 Arithmetic ground fields for abelian varieties Keywords:real theta-characteristics; real abelian varieties; complex conjugation on complex algebraic curves; real curves; Picard scheme; Real hyperelliptic curves; real plane curves; real trigonal curves; real moduli Citations:Zbl 0426.14013; Zbl 0492.14015 PDF BibTeX XML Cite \textit{B. H. Gross} and \textit{J. Harris}, Ann. Sci. Éc. Norm. Supér. (4) 14, 157--182 (1981; Zbl 0533.14011) Full Text: DOI Numdam EuDML OpenURL References: [1] N. A’CAMPO , Sur la première partie du seizième problème de Hilbert (Sém. Bourbaki, exposé 537, 1979 ). Numdam | Zbl 0451.14019 · Zbl 0451.14019 [2] M. ATIYAH , Riemann Surfaces and Spin Structures (Ann. Éc. Norm. Sup., T. 4, 4e serie, 1971 , pp. 47-62). Numdam | MR 44 #3350 | Zbl 0212.56402 · Zbl 0212.56402 [3] P. GRIFFITHS and J. HARRIS , Principles of Algebraic Geometry , New York, Wiley, 1978 . MR 80b:14001 | Zbl 0408.14001 · Zbl 0408.14001 [4] B. GROSS , Arithmetic on Elliptic Curves with Complex Multiplication (Lecture Notes, No. 776, Springer, 1980 ). MR 81f:10041 | Zbl 0433.14032 · Zbl 0433.14032 [5] A. HURWITZ , Über eindeutige 2n-fach periodische Funktionen (Math. Werke I., 1932 , pp. 99-116). [6] D. HUSEMOLLER and J. MILNOR , Symmetric Bilinear Forms , New York, Springer, 1973 . MR 58 #22129 | Zbl 0292.10016 · Zbl 0292.10016 [7] F. KLEIN , On Riemann’s Theory of Algebraic Functions and Their Integrals , Cambridge, Macmillan and Bowes, 1893 . · JFM 25.0689.02 [8] F. KLEIN , Ueber Realitätsverhältnisse bei der einem beliebigen Geschlechte zugehoren Normalcurve der \varphi (Math. Ann., Vol. 42, 1893 , pp. 1-29). Article | JFM 25.0689.03 · JFM 25.0689.03 [9] S. LANG and J. TATE , Principal Homogeneous Spaces Over Abelian Varieties (Amer. J. Math., Vol. 80, pp. 659-684). MR 21 #4960 | Zbl 0097.36203 · Zbl 0097.36203 [10] H. MARTENS , A New Proof of Torelli’s Theorem (Annals of Math., Vol. 78 1963 , pp. 107-111). MR 27 #2506 | Zbl 0147.20801 · Zbl 0147.20801 [11] D. MUMFORD , Theta Characteristics of An Algebraic Curve (Ann. Éc. Norm. Sup., T. 4, 4e série, 1971 , pp. 181-192). Numdam | MR 45 #1918 | Zbl 0216.05904 · Zbl 0216.05904 [12] M. SEPPÄLÄ , Quotients of Complex Manifolds and Moduli Spaces of Klein Surfaces (Preprint). · Zbl 0456.32014 [13] J.-P. SERRE , Groupes algébriques et corps de classes , Hermann, Paris, 1959 . MR 21 #1973 | Zbl 0097.35604 · Zbl 0097.35604 [14] G. SHIMURA , On the Real Points of an Arithmetic quotient of a Bounded Symmetric Domain (Math. Ann., Vol. 215, 1975 , pp. 135-164). MR 58 #27992 | Zbl 0394.14007 · Zbl 0394.14007 [15] J. TATE , W.C. Groups Over p-Adic Fields (Sém. Bourbaki, exposé 156, 1957 ). Numdam | MR 21 #4162 | Zbl 0091.33701 · Zbl 0091.33701 [16] G. WEICHOLD , Uber symmetrische Riemannsche Flachen (Zeit f. Math. u. Phys., Vol. 28, 1883 , pp. 321-351). JFM 15.0434.01 · JFM 15.0434.01 [17] A. WEIL , The Field of Definition of a Variety (Amer. J. Math., Vol. 78, 1956 , pp. 509-524). MR 18,601a | Zbl 0072.16001 · Zbl 0072.16001 [18] G. WILSON , Hilbert’s Sixteenth Problem (Topology, Vol. 17, 1978 , pp. 53-73). MR 58 #16684 | Zbl 0394.57001 · Zbl 0394.57001 [19] E. WITT , Zerlegung reeller algebraischer Funktionen in Quadrate (J. Crelle., Vol. 171, 1934 , pp. 4-11). Article | Zbl 0009.29103 | JFM 60.0099.01 · Zbl 0009.29103 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.