×

On local isometric immersions of Riemannian symmetric spaces. (English) Zbl 0533.53052

Let \(M=G/K\) be an s.c. irreducible Riemannian symmetric space of compact type. Let 2c(M) denote the maximal rank of its curvature transformation. Then c(M) and c(M)-2 are lower bounds for the codimension of isometric and conformal immersions of M into Euclidean space. c(M) is computed for all M. For example, \(2c(M)=\dim M-rkG+rkK\), if M is not a real Grassmannian.
Reviewer: D.Ferus

MSC:

53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.)
53C35 Differential geometry of symmetric spaces
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Y. AGAOKA, A note on local isometric embeddings of P2(C), · Zbl 0633.53080
[2] Y. AGAOKA AND E. KANEDA, On local isometric immersions of Riemannian symmetri spaces, Proc. Japan Acad. 58, Ser. A (1982), 440-442. · Zbl 0515.53041
[3] S. ARAKI, On root systems and an infinitesimal classification of irreducible symmetri spaces, J. Math. Osaka City Univ. 13 (1962), 1-34. · Zbl 0123.03002
[4] N. BOURBAKI, Groupes et Algebre de Lie, Chap. 4, 5 et 6, Hermann, Paris, 1968 · Zbl 0186.33001
[5] S. S. CHERN and J. SIMONS, Characteristic forms and geometric invariants, Ann. o Math. 99 (1974), 48-69. JSTOR: · Zbl 0283.53036
[6] H. DONNELLY, Chern-Simons invariants of reductive homogeneous spaces, Trans. Amer Math. Soc. 227 (1977), 141-164. JSTOR: · Zbl 0293.53018
[7] J. GASQUI, Sur existence d’immersions isometrique locales pour les varietes rieman niennes, J. Diff. Geom. 10 (1975), 61-84. · Zbl 0296.53040
[8] J. L. HEITSCH AND H. LAWSON, Jr., Transgressions, Chern-Simons invariants and th classical groups, J. Diff. Geom. 9 (1974), 423-434. · Zbl 0281.57030
[9] S. HELGASON, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978. · Zbl 0451.53038
[10] H. JACOBOWITZ, Curvature operators on the exterior algebra, Linear and Multilinea Algebra, 7 (1979), 93-105. · Zbl 0402.53026
[11] E. KANEDA, On local isometric immersions of the spaces of negative constant curvatur into the euclidean spaces, J. Math. Kyoto Univ. 19 (1979), 269-284. · Zbl 0421.53037
[12] E. KANEDA, The spectra of 1-forms on simply connected compact irreducible Riemannia symmetric spaces, J. Math. Kyoto Univ. 23 (1983), 369-395. · Zbl 0565.58041
[13] E. KANEDA AND N. TANAKA, Rigidity for isometric imbeddings, J. Math. Kyoto Univ 18 (1978), 1-70. · Zbl 0419.53031
[14] S. KOBAYASHI, Isometric imbeddings of compact symmetric spaces, Thoku Math. J. 2 (1968), 21-25. · Zbl 0175.48301
[15] S. KOBAYASHI AND K. NOMIZU, Foundations of Differential Geometry II, John Wiley Sons, New York, 1969. · Zbl 0526.53001
[16] O. Loos, Symmetric Spaces II, Benjamin, New York, 1969 · Zbl 0175.48601
[17] M. MATSUMOTO, Local imbedding of Riemann spaces, Mem. Coll. Sci. Univ. Kyoto Ser A (1953), 179-207. · Zbl 0057.13802
[18] J. D. MOORE, Reducibility of isometric immersions, Proc. Amer. Math. Soc. 34 (1972), 229-232. · Zbl 0236.53030
[19] J. D. MOORE, Submanifolds of constant positive curvature I, Duke Math. J. 44 (1977), 449-484. · Zbl 0361.53050
[20] J. D. MOORE, On conformal immersions of space forms, Lect. Notes in Math. 838 (1981), 203-210. · Zbl 0437.53042
[21] T. OTSUKI, Isometric imbedding of Riemann manifolds in a Riemann manifold, J. Math Soc.Japan, 6 (1954), 221-234. · Zbl 0058.37702
[22] M. TAKEUCHI, Modern Theory of Spherical Functions (in Japanese), Iwanami, Tokyo, 1975 · Zbl 0308.90050
[23] J. VILMS, Local isometric imbedding of Riemannian ti-manifolds into Euclidean ( · Zbl 0362.53009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.