×

zbMATH — the first resource for mathematics

Generalized topological spaces. (English) Zbl 0533.54001
The author introduces a new generalization of topological spaces by considering idempotent, but multivalued closure operators. He characterizes closed and open sets by neighbourhoods, the duality between ”open” and ”closed” given by complementation as usually. As examples for the open sets may be mentioned: the subalgebras of a universal algebra, the convex subsets of a poset and the connected subsets of a connected topological space.
Reviewer: B.Behrens

MSC:
54A05 Topological spaces and generalizations (closure spaces, etc.)
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] CSÁSZÁR Á.: Grundlagen der allgemeinen Topologie. Budapest 1963. · Zbl 0114.13803
[2] ČECH E.: Topologické prostory. Čas. pěst, mat., 66, 1936-37 D 225-264. · JFM 63.1170.03
[3] HAUSDORFF F.: Gestufte Räume. Fundamenta mathematicae, 25 1935 486-502. · Zbl 0012.42103
[4] KELLEY J. L.: General Topology. D. Van Nostrand company, New York 1955 · Zbl 0518.54001
[5] KOUTSKÝ K.: Určenost topologických prostorů pomocí úplných systémů okolí. Spisy přír. fak. MU, 1956, 374, 1-11.
[6] КУТАТОВСКИЙ К.: Топология I, II. Москва 1969.
[7] NETZER N.: Konvergenz in verallgemeinerten topologischen Raumen. Math Nachr, 77, 245-262. · Zbl 0359.54003
[8] NOVÁK, J : On convergence spaces and their sequential envelopes. Czech Math. Journ., 15(90), 1965, 74-100. · Zbl 0139.15906
[9] FUCHS L.: Partially Ordered Algebraic Systems. Pergamon press, New York 1963 · Zbl 0137.02001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.