×

zbMATH — the first resource for mathematics

On the strong law of large numbers for pairwise independent random variables. (English) Zbl 0534.60028
Using a method of N. Etemadi [Z. Wahrscheinlichkeitstheor. Verw. Geb. 55, 119-122 (1981; Zbl 0438.60027)] the authors prove: if \(X_ 1,X_ 2,..\). are pairwise independent r.v.’s with \[ \sum^{\infty}_{m=1}m^{-2}Var(X_ m) < \infty \tag{\text{i}} \] and \[ n^{-1}\sum^{n}_{m=1}E| X_ m-EX_ m| = O(1) \tag{\text{ii}} \] then the strong law of large numbers holds i.e. \[ \lim n^{-1} \sum^{n}_{m=1} (X_ m-EX_ m) = 0 \quad\text{a.s.} \] It is also proved that the theorem does not hold true if the condition of pairwise independence is replaced by orthogonality. The necessity of condition (ii) is also investigated.
Reviewer: P.Révész

MSC:
60F15 Strong limit theorems
40A30 Convergence and divergence of series and sequences of functions
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. V. Bočkarev, Rearrangements of Fourier-Walsh series,Izv. Akad. Nauk SSS, RSer. Mat. 43 (1979), 1025–1041 (Russian).
[2] N. Etemadi, An elementary proof of the strong law of large numbers,Z. Wahrscheinlichkeitstheorie verw. Gebiete,55 (1981), 119–122. · Zbl 0438.60027 · doi:10.1007/BF01013465
[3] S. Kaczmarcz, Notes on orthogonal series. II,Studia Math.,5 (1943), 103–106.
[4] D. Menchoff, Sur les séries de fonctions orthogonales (Première partie),Fundamenta Math.,4 (1923), 82–105. · JFM 49.0293.01
[5] S. Nakata, On the unconditional convergence of Walsh series,Anal. Math.,5 (1979), 201–205. · Zbl 0441.42014 · doi:10.1007/BF01908903
[6] P. Révész,The strong laws of large numbers. Academic Press (New York, 1967).
[7] K. Tandori, Über die Divergenz der Walshschen Reihen,Acta Sci. Math Szeged,27 (1966), 261–263. · Zbl 0154.06303
[8] K. Tandori, Bemerkung zum Gesetzt der großen Zahlen,Periodica Math. Hung.,2 (1972), 33–39. · Zbl 0246.60017 · doi:10.1007/BF02018649
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.