Iglèsias Pereira, Helena Rate of convergence towards a Fréchet type limit distribution. (English) Zbl 0535.60022 Ann. Sci. Univ. Clermont-Ferrand II 76, Probab. Appl. 1, 67-80 (1983). Summary: Let \(\{X_ i\}\), \(i\in N\), be a sequence of i.i.d. random variables, and \(M_ n=\max(X_ 1,...,X_ n)\). It is well-known that \(F_{M_ n}(x)=F^ n\!_{X_ 1}(x)\), and that if there are attraction coefficients \(\{a_ n\}\), \(n\in N\), \((a_ n>0)\) and \(\{b_ n\}\), \(n\in N\), \((b_ n\in R)\) such that \(F^ n(a_ nx+b_ n)\to G(x)\), \(x\in C_ G\), then G is one of the three extreme value stable types: \(\Lambda(x)=\exp(-e^{-x})\) if \(-\infty<x<+\infty\) (Gumbel type), \(\Phi_{\alpha}(x)=\exp(-x^{-\alpha})\) if \(0<x<\infty\) (Fréchet type), \(\Psi_{\alpha}(x)=\exp(-(-x^{\alpha}))\) if \(-\infty<x<0\) (Weibull type). There are no definite results on the rate of convergence of \(F^ n\) towards the limiting form but in the case F is of normal type. Under mild conditions on the tailweight of F, we study the rate of convergence in the case of a Fréchet type limit distribution. Cited in 2 Documents MSC: 60F05 Central limit and other weak theorems Keywords:extreme value stable types; rate of convergence × Cite Format Result Cite Review PDF Full Text: Numdam EuDML References: [1] Abramowitz , M. & Stegun , I.A. ( 1972 ) ” Handbook of Mathematical Functions ”. Dover , New York . · Zbl 0543.33001 [2] Anderson , C.W. ( 1971 ) ” Contributions to the Asymptotic Theory of Extreme Values ”, Ph. D. Thesis, Imperial College , London . [3] Fisher , R.A. & Tippett , L.H. ( 1928 ) ” Limiting Forms of the Frequency Distribution of the Largest or Smallest Member of a Sample ”, Proceed. of the Cambridge Philosophical Society , vol. 24 . JFM 54.0560.05 · JFM 54.0560.05 [4] Galambos , J. ( 1978 ) ” The Asymptotic Theory of Extreme Order Statistics ”, J. Wiley & Sons , New York . MR 489334 | Zbl 0381.62039 · Zbl 0381.62039 [5] Gnedenko , B.V. ( 1943 ) ” Sur la Distribution Limite du Terme Maximum d’une Série Aléatoire ”, Ann. Math. , vol. 44 , 423 - 453 . MR 8655 | Zbl 0063.01643 · Zbl 0063.01643 · doi:10.2307/1968974 [6] Gnedenko , B.V. & Kolmogorov , A.N. ( 1968 ) ” Limit Distributions for Sums of Independent Random Variables ”, Addison-Wesley , Cambridge (Mass.) . MR 233400 | Zbl 0056.36001 · Zbl 0056.36001 [7] Gomes , I. ( 1982 ) ” Penultimate Limiting Forms in Extreme Value Theory ”, Centro de Estatistica e Aplicações da Univ. de Lisboa . · Zbl 0561.62015 [8] Gomes . I. ( 1978 ) ” Problems in Extreme Value Theory ”, Ph. D. Thesis, Sheffield . [9] Iglésias . H. ( 1982 a) ” On the Domain of Attraction of Extreme Value Stable Distributions ”, a publicar. [10] Iglésias , H. ( 1982 b) ” Rate of Convergence Towards a Fréchet Type Limit Distribution ”, IX Jornadas Hispano-Lusas de Matemática, Salamanca . MR 798634 · Zbl 0535.60022 [11] Iglésias , H. ( 1982 c) ” Great Age in Biometry ”, XI Conference International de Biometrie, Toulouse . This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.