×

zbMATH — the first resource for mathematics

Lois limites du bootstrap de certaines fonctionnelles. (French) Zbl 0535.62046
The bootstrap method is applied to von Mises functionals. The possible limit laws of the empirical functionals obtained by the method are characterized and various conditions for their occurrence are given.
Reviewer: W.Schlee

MSC:
62G99 Nonparametric inference
60F17 Functional limit theorems; invariance principles
62G10 Nonparametric hypothesis testing
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Efron , Bootstrap Methods . Ann. Stat. , t. 7 , 1 , 1979 , p. 1 . MR 515681 | Zbl 0406.62024 · Zbl 0406.62024 · doi:10.1214/aos/1176344552
[2] Filippova , Mises Theorems . Theory of Prob. and Appl. (SIAM), t. VI , 1 , 1962 , p. 24 .
[3] Bickel , Freedman , Some asymptotic. Theory for the Bootstrap . Ann. Stat. , t. 9 , 6 , 1981 , p. 1196 . Article | MR 630103 | Zbl 0449.62034 · Zbl 0449.62034 · doi:10.1214/aos/1176345637 · minidml.mathdoc.fr
[4] Neveu , Processus aléatoires gaussiens , Université de Montréal , 1968 . MR 272042 | Zbl 0192.54701 · Zbl 0192.54701
[5] Serfling , Approximations Theorems of Mathematical Statistics , Wiley . · Zbl 1001.62005
[6] Rubin , Vitale , Asymptotic Distributions of Symetric Statistics . Ann. Stat. , t. 8 , 1980 , p. 165 . Article | Zbl 0422.62016 · Zbl 0422.62016 · doi:10.1214/aos/1176344898 · minidml.mathdoc.fr
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.