A method for the numerical inversion of Laplace transforms. (English) Zbl 0535.65090

The authors describe Durbin’s method with consists in approximating in an interval [0,2T] the unknown function by a trigonometric polynomial (with period 2T). They discuss the problem of proper balancing the discretization error (stemming from T being finite) and the truncation error (stemming from the trigonometric polynomial being a finite sum). By combining an asymptotic method of correction with techniques of convergence acceleration they find a way out of this dilemma. The paper contains a FORTRAN subroutine to treat the problem and numerical case studies with impressive results.
Reviewer: R.Gorenflo


65R10 Numerical methods for integral transforms
44-04 Software, source code, etc. for problems pertaining to integral transforms
44A10 Laplace transform
Full Text: DOI


[1] Albrecht, P.; Honig, G., Die numerische Inversion der Laplace-Transformierten, Angew. Informatik, 8, 336-345 (1977) · Zbl 0364.65109
[2] Crump, K. S., Numerical inversion of Laplace transforms using a Fourier series approximation, J. ACM, 23, 1, 89-96 (1976) · Zbl 0315.65074
[3] Doetsch, G., (Handbuch der Laplace-Transformation, Bd. I, II, III (1950), Birkhäuser: Birkhäuser Basel) · Zbl 0040.05901
[4] Dubner, H.; Abate, J., Numerical inversion of Laplace transforms by relating them to the finite Fourier cosine transform, J. ACM, 15, 1, 115-123 (1968) · Zbl 0165.51403
[5] Durbin, F., Numerical inversion of Laplace transforms: an effective improvement of Dubner and Abate’s method, Comput. J., 17, 4, 371-376 (1973) · Zbl 0288.65072
[6] Honig, G., Zur numerischen Lösung partieller Differentialgleichungen mit Laplace-Transformation, (Diss. Univ. Dortmund D290 (1978)), Berichte der Kernforschungsanlage Jülich-Jül-1550
[7] Kehr, K.; Honig, G.; Richter, D., Stochastic theory of spin depolarization of muons diffusing in the presence of traps, Z. Phys., B 32, 49-58 (1978)
[8] Simon, R. M.; Stroot, M. T.; Weiss, G. H., Numerical inversion of Laplace transforms with application to percentage labeled experiments, Comput. Biomed. Rev., 6, 596-607 (1972)
[9] Veillon, F., Quelques méthodes nouvelles pour le calcul numérique de la transformée inverse de Laplace (1972), Th. Univ. de Grenoble
[10] Warzee, G., Application de la transformée de Laplace et de la méthode des éléments finis à la résolution de l’équation de conduction thermique insta tionnaire, C.R. Acad. Sci. Paris Sér., A278, 1265-1266 (1974) · Zbl 0282.65082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.