zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Medians in median graphs. (English) Zbl 0536.05057
If G is an undirected graph, V(G) is its vertex set and $A\subseteq V(G)$, then a median of A is any vertex of G which has the minimal sum of distance from all vertices of A. If each subset of V(G) having three vertices has exactly one median, then G is called a median graph. The properties of median graphs are studied. The interrelation between median graphs and median semilattices is shown; a median semilattice is a meet semilattice $(X,\le)$ such that every principle ideal $\{$ $x\vert x\le a\}$ is a distributive lattice and any three elements have an upper bound whenever each pair of them does. At the end of the paper the concept of a local median is introduced and interrelations between medians and Condorcet vertices are described.
Reviewer: B.Zelinka

05C99Graph theory
05C38Paths; cycles
Full Text: DOI
[1] Avann, S. P.: Metric ternary distributive semi-lattices. Proc. amer. Math. soc. 12, 407-414 (1961) · Zbl 0099.02201
[2] H.J. Bandelt, Discrete ordered sets whose covering graphs are median, Proc. Amer. Math. Soc., to appear. · Zbl 0547.06001
[3] Bandelt, H. J.; Hedlíková, J.: Median algebras. Discrete math. 45, 1-30 (1983)
[4] Barbut, M.: Médiane, distributivité, éloignements. Math. sci. Hum. 70, 5-31 (1980) · Zbl 0439.06007
[5] Barbut, M.: Médianes, Condorcet et Kendall. Math. sci. Hum. 69, 5-13 (1980) · Zbl 0437.90010
[6] Barthélemy, J. P.: Trois proprietés des médianes dans un treillis modulaire. Math. sci. Hum. 75, 83-91 (1981)
[7] Barthélemy, J. P.: Caractérisation médiane des arbres. Annals discrete math. 17, 39-46 (1983) · Zbl 0548.05022
[8] Barthélemy, J. P.; Monjardet, B.: The median procedure in cluster analysis and social choice theory. Math. social sci. 1, 235-267 (1981) · Zbl 0486.62057
[9] Duffus, D.; Rival, I.: Path length in the covering graph of a lattice. Discrete math. 19, 139-158 (1977) · Zbl 0372.06005
[10] Evans, E.: Median lattices and convex subalgebras. Colloq. math. Soc. jános bolyai, 29, universal algebra, 225-240 (1982)
[11] Hansen, P.; Thisse, J. F.: Outcomes of voting and planning: Condorcet, Weber and rawls locations. J. public economics 16, 1-15 (1981)
[12] Jordan, C.: Sur LES assemblages de lignes. J. reine angew. Math. 70, 185-190 (1869)
[13] Monjardet, B.: Caractérisations métriques des ensembles ordonnés semi-modulaire. Math. sci. Hum. 56, 77-87 (1976)
[14] Monjardet, B.: Théorie et applications de la médiane dans LES treillis distributifs finis. Annals discrete math. 9, 87-91 (1980) · Zbl 0451.06012
[15] Mulder, H. M.: The interval function of a graph. Academisch proefschrift, mathematisch centrum (1980) · Zbl 0446.05039
[16] Mulder, H. M.; Schrijver, A.: Median graphs and Helly hypergraphs. Discrete math. 25, 41-50 (1979) · Zbl 0395.05058
[17] Sholander, M.: Medians, lattices, and trees. Proc. amer. Math. soc. 5, 808-812 (1954) · Zbl 0056.26201
[18] Slater, P. J.: Maximin facility location. J. res. Nat. bureau standards 79B, 107-115 (1975) · Zbl 0327.05105
[19] Slater, P. J.: Centers to centroids in graphs. J. graph theory 2, 209-222 (1978) · Zbl 0425.05021
[20] Slater, P. J.: Medians of arbitrary graphs. J. graph theory 4, 389-392 (1980) · Zbl 0446.05029
[21] Wendell, R. E.; Mckelvey, R. D.: New perspectives in competitive location theory. Europ. J. Oper. res. 6, 174-182 (1981) · Zbl 0451.90043
[22] Zelinka, B.: Medians and peripherians of trees. Archivum math. (Brno) 4, 87-95 (1968) · Zbl 0206.26105