×

zbMATH — the first resource for mathematics

Springer forms and the first Tits construction of exceptional Jordan division algebras. (English) Zbl 0536.17009
Let J be an absolutely simple Jordan division algebra of degree three over a field k of arbitrary characteristic. Let E be a separable cubic subfield of J. Necessary and sufficient conditions are given for J to contain a subalgebra constructed from E by the first Tits construction. These conditions depend on a quadratic form associated with E which was introduced by T. A. Springer. As a consequence, if k has characteristic \(\neq 3\) and contains third roots of units, then a central exceptional Jordan division algebra J over k arises from the first Tits construction if and only if every reducing field of J also splits J. If J is an exceptional simple Jordan algebra arising from the first Tits construction, then every isotope of J is isomorphic to J.
Reviewer: R.Bix

MSC:
17C10 Structure theory for Jordan algebras
17C20 Simple, semisimple Jordan algebras
17C40 Exceptional Jordan structures
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Albert, A. A. Structure of algebras. Colloq. Publ., Vol. 24, Amer. Math. Soc., Providence, R. I., 1939 · Zbl 0023.19901
[2] ? A construction of exceptional Jordan division algebras. Ann. of Math. (2)67 (1958), 1-28 · Zbl 0079.04701
[3] ? On exceptional Jordan division algebras. Pacific J. Math.15 (1965), 377-404 · Zbl 0135.07202
[4] Ferrar, J. C. Generic splitting fields of composition algebras. Trans. Amer. Math. Soc.128 (1967), 506-514 · Zbl 0153.36401
[5] Jacobson, N. Structure and representations of Jordan algebras. Colloq. Publ., Vol. 39, Amer. Math. Soc., Providence, R. I., 1968 · Zbl 0218.17010
[6] Lang, S. Algebra. Addison-Wesley Publishing Company, Reading, MS, 1965
[7] Loos, O. Jordan pairs. Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-Heidelberg-New York, 1975 · Zbl 0301.17003
[8] McCrimmon, K. The Freudenthal-Springer-Tits constructions of exceptional Jordan algebras. Trans. Amer. Math. Soc.139 (1969), 495-510 · Zbl 0175.02703
[9] ? The Freudenthal-Springer-Tits constructions revisited. Trans. Amer. Math. Soc.148 (1970), 293-314 · Zbl 0224.17013
[10] Petersson, H. P. Composition algebras over a field with a discrete valuation. J. of Algebra29 (1974), 414-426 · Zbl 0291.17013
[11] Petersson, H. P. and M. L. Racine. Exceptional Jordan division algebras. Contemporary Mathematics13 (1982), 307-316 · Zbl 0502.17010
[12] - Jordan algebras of degree 3 and the Tits process. To appear · Zbl 0589.17015
[13] - Pure and blende Tits constructions of exceptional Jordan division algebras. To appear
[14] Springer, T. A. Sur les formes quadratiques d’indice zéro. C. R. Acad. Sci. Paris234 (1952), 1517-1519 · Zbl 0046.24303
[15] ? Oktaven, Jordan-Algebren und Ausnahmegruppen. University of Göttingen Lecture Notes, Göttingen, 1963
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.