×

zbMATH — the first resource for mathematics

Artin groups and infinite Coxeter groups. (English) Zbl 0536.20019
A Coxeter matrix over a finite set I is a symmetric matrix with entries in \(N\cup \{\infty \},\) where \(m_{ii}=1\) for \(i\in I\) and \(m_{ij}\geq 2\) for \(i\neq j\in I.\) The Artin group for this matrix has generating set \(\{a_ i:\quad i\in I\}\) and for each pair \(i\neq j\) with \(m_{ij}<\infty\) the relation equating the alternating string of \(a_ i's\) and \(a_ j's\) of length \(m_{ij}\) beginning with \(a_ i\) to the alternating string of the same length beginning with \(a_ j\). The Coxeter group associated to this Artin group is obtained by setting the squares of the generators equal to the identity. An Artin or Coxeter group is of extralarge type if \(m_{ij}\geq 4\) for all \(i\neq j\). If G is an Artin or Coxeter group with matrix \({\mathcal M}\) over the set I and \(J\subseteq I\), then \(G_ J\) is the subgroup of G generated by \(\{a_ j:\quad j\in J\}\) and \({\mathcal M}_ J\) is the restriction of \({\mathcal M}\) to \(J\times J\). After a detailed discussion of the history of these groups and their relationships with other groups, the authors use small cancellation theory to prove the following four theorems: Theorem 1. Let G be an Artin or Coxeter group of extralarge type. If \(J\subseteq I\), then \(G_ J\) has a presentation defined by the Coxeter matrix \({\mathcal M}_ J\) and the generalized word problem for \(G_ J\) in G is solvable. If \(J,K\subseteq I\), then \(G_ J\cap G_ K=G_{(J\cap K)}\). Theorem 2. An Artin group of extralarge type is torsion-free. Theorem 3. Let G be an Artin group of extralarge type. Then the set \(\{a^ 2_ i: i\in I\}\) freely generates a free subgroup of G. Theorem 4. An Artin or Coxeter group of extralarge type has solvable conjugacy problem.
Reviewer: S.C.Althoen

MSC:
20F05 Generators, relations, and presentations of groups
20F06 Cancellation theory of groups; application of van Kampen diagrams
20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects)
20F36 Braid groups; Artin groups
20E07 Subgroup theorems; subgroup growth
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Birman, J.: Braids, Links, and Mapping Class Groups. Princeton, N.J.: Princeton University Press 1974
[2] Bourbaki, N.: Groupes et algèbres de Lie, Chapitres 4, 5, et 6, Eléments de Mathématique XXXIV. Paris: Hermann 1968 · Zbl 0186.33001
[3] Brieskorn, E.: Die Fundamentalgruppe des Raumes der Regulären Orbits einer endlichen komplexen Spielsgruppe. Invent. Math.12, 57-61 (1971) · Zbl 0204.56502 · doi:10.1007/BF01389827
[4] Brieskorn, E., Saito, K.: Artin-gruppen und Coxeter-gruppen. Invent. Math.17, 245-271 (1972) · Zbl 0243.20037 · doi:10.1007/BF01406235
[5] Coxeter, H.S.M.: The complete enumeration of finite groups of the formR i 2 =(R iRj)k ij=1. J. London Math. Soc.10, 21-25 (1935) · Zbl 0010.34202 · doi:10.1112/jlms/s1-10.37.21
[6] Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math.17, 273-302 (1972) · Zbl 0238.20034 · doi:10.1007/BF01406236
[7] Garside, F.A.: The braid group and other groups. Quart. J. Math. Oxford, 2 Ser.20, 235-254 (1969) · Zbl 0194.03303 · doi:10.1093/qmath/20.1.235
[8] Len, V.Y.: Artin’s braids and their connections with groups and spaces. Etoge Nauke e Texneke. Algebra, Topologeya, Geometreya, Tom 17
[9] Lyndon, R.C.: On Dehn’s algorithm. Math. Ann.166, 208-228 (1966) · Zbl 0138.25702 · doi:10.1007/BF01361168
[10] Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete. Berlin: Springer 1977 · Zbl 0368.20023
[11] Schupp, P.E.: A survey of small cancellation theory. Word Problems, pp. 569-589. Amsterdam: North Holland 1973 · Zbl 0292.20034
[12] Tits, J.: Le problème des mots dans les groupes de Coxeter. Instituto Nazionale di Alta Mathematica, Symposia Mathematica 1, 175-185 (1968)
[13] Tits, J.: Normalisateurs de tores I. Groupes de Coxeter étendus. J. Algebra 4, 96-116 (1966) · Zbl 0145.24703 · doi:10.1016/0021-8693(66)90053-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.