Halperin, S. Lectures on minimal models. (English) Zbl 0536.55003 Mém. Soc. Math. Fr., Nouv. Sér. 9-10, 261 p. (1983). This text, published as a preprint, has been reviewed [Publ. U.E.R., Math. Pures Appl. 3, No.4 (1981; Zbl 0505.55014)]. Reviewer: J.-C.Thomas Cited in 6 ReviewsCited in 84 Documents MSC: 55P62 Rational homotopy theory 13N05 Modules of differentials 55R05 Fiber spaces in algebraic topology 16W50 Graded rings and modules (associative rings and algebras) 12H05 Differential algebra 55S45 Postnikov systems, \(k\)-invariants Keywords:simplicial de Rham algebra; minimal models; free differential graded algebras; rational homotopy type of a space; Postnikov decomposition; rational spaces; formal spaces; rational fibrations PDF BibTeX XML Cite \textit{S. Halperin}, Mém. Soc. Math. Fr., Nouv. Sér. 9--10, 261 p. (1983; Zbl 0536.55003) Full Text: DOI Numdam EuDML References: [1] H.J. Baues and J.M. Lemaire , Minimal models in homotopy theory , Math. Ann. 255 ( 1977 ) 219-242. MR 55 #4174 | Zbl 0322.55019 · Zbl 0322.55019 · doi:10.1007/BF01425239 · eudml:162934 [2] A.K. Bousfield and V.K.A.M. Gugenheim , On PL de Rham theory and rational homotopy type , Memoires of the A.M.S. 179 ( 1976 ). MR 54 #13906 | Zbl 0338.55008 · Zbl 0338.55008 [3] H. Cartan , Théories cohomologiques , Inventiones math. 35 ( 1976 ) 261-271. MR 55 #4139 | Zbl 0334.55005 · Zbl 0334.55005 · doi:10.1007/BF01390140 · eudml:142407 [4] K.T. Chen , Iterated integrals of differential forms and loop space homology , Ann. of Math. 97 ( 1973 ) 217-246. MR 52 #1756 | Zbl 0227.58003 · Zbl 0227.58003 · doi:10.2307/1970846 [5] P.A. Griffiths and J.W. Morgan , Rational homotopy theory and differential forms , Progress in Mathematics, vol. 6, Birkhauser ( 1981 ). MR 82m:55014 | Zbl 0474.55001 · Zbl 0474.55001 [6] P. P. Grivel , Formes différentielles et suites spectrales , Ann. Inst. Fourier 29 ( 1979 ) 17-37. Numdam | MR 81b:55041 | Zbl 0381.55008 · Zbl 0381.55008 · doi:10.5802/aif.751 · numdam:AIF_1979__29_3_17_0 · eudml:74418 [7] D. Lehmann , Resumé de la théorie du type d’homotopie rationelle de Sullifan , Publ. Internes de l’U.E.R. de Math., Université de Lille I, 86 ( 1976 ). [8] D. Lehmann , Theorié homotopique des formes differentielles , Asterique 45, S.M.F. ( 1977 ). MR 58 #7616 | Zbl 0367.55008 · Zbl 0367.55008 [9] D. Sullivan , Infinitesimal computations in topology , Publ. I.H.E.S. 47 ( 1977 ) 269-331. Numdam | MR 58 #31119 | Zbl 0374.57002 · Zbl 0374.57002 · doi:10.1007/BF02684341 · numdam:PMIHES_1977__47__269_0 · eudml:103948 [10] R.G. Swan , Thom’s theory of differential forms on simplicial sets , Topology 14 ( 1975 ) 271-273. MR 52 #4327 | Zbl 0319.58004 · Zbl 0319.58004 · doi:10.1016/0040-9383(75)90008-7 [11] D. Tanré , Homotopie rationelle : Modèles de Chen, Quillen, Sullivan, to appear. · Zbl 0539.55001 [12] C. Watkiss , Cohaines commutatives sur les ensembles simpliciaux , Publ. Internes de l’U.E.R. de Math., Université de Lille I, 107 ( 1976 ). [13] Wu Wen Taün , Theory of I*-functor in algebraic topology , I Scientia Sinica 18 ( 1975 464-482, II Scientia Sinica 19 ( 1976 ) 647-664. Zbl 0336.55019 · Zbl 0336.55019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.