zbMATH — the first resource for mathematics

Two mixed finite element methods for the simply supported plate problem. (English) Zbl 0536.73063
This paper studies two mixed finite element models for the solution of the biharmonic model of a simply supported plate problem. The mixed formulation permits the use of lower order polynomials. The two approximate schemes are developed and error estimates presented. The paper also discusses efficient computational procedures for solving approximate problems.
The main contribution of the interesting paper is to point out the advantages of using mixed finite element models for plate bending in terms of simplicity of the formulation and accuracy of the results.
Reviewer: C.Brebbia

74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
74S99 Numerical and other methods in solid mechanics
Full Text: DOI EuDML
[1] O. AXELSSON, Solution of linear systems of equations : iterative methods, Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer-Verlag, 1971. Zbl0354.65021 MR448834 · Zbl 0354.65021
[2] I. BABUŠKA and A. K. AZIZ, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (Editor), Academic Press, New York, 1972. Zbl0268.65052 MR421106 · Zbl 0268.65052
[3] I. BABUŠKA, The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), pp. 179-192. Zbl0258.65108 MR359352 · Zbl 0258.65108 · doi:10.1007/BF01436561 · eudml:132183
[4] J. H. BRAMBLE and J. E. OSBORN, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), pp. 525-549. Zbl0305.65064 MR366029 · Zbl 0305.65064 · doi:10.2307/2005658
[5] J. H. BRAMBLE and L. E. PAYNE, Some Uniqueness Theorems in the Theory of Elasticity, Arch. for Rat. Mech. and Anal., 9 (1962), pp. 319-328. Zbl0103.40402 MR143374 · Zbl 0103.40402 · doi:10.1007/BF00253354
[6] J. H. BRAMBLE and L. R. SCOTT, Simultaneous approximation in scales of Banach spaces, Math. Comp. 32 (1978), pp. 947-954. Zbl0404.41005 MR501990 · Zbl 0404.41005 · doi:10.2307/2006327
[7] J. H. BRAMBLE, The lagrange multiplier method for Dirichlet’s problem, Math. Comp. 37 (1981), pp. 1-11. Zbl0477.65077 MR616356 · Zbl 0477.65077 · doi:10.2307/2007496
[8] P. G. CIARLET and P. A. RAVIART, A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. Zbl0337.65058 MR657977 · Zbl 0337.65058
[9] P. G. CIARLET and R. GLOWINSKI, Dual iterative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp. 277-295. Zbl0305.65068 MR373321 · Zbl 0305.65068 · doi:10.1016/0045-7825(75)90002-X
[10] R. S. FALK, Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp. 556-567. Zbl0383.65059 MR478665 · Zbl 0383.65059 · doi:10.1137/0715036
[11] R. GLOWINSKI and O. PIRONNEAU, Numerical Methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. Zbl0427.65073 MR524511 · Zbl 0427.65073 · doi:10.1137/1021028
[12] J. L. LIONS and E. MAGENES, Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. Zbl0165.10801 MR247243 · Zbl 0165.10801
[13] M. SCHECHTER, On On \(L^p\) estimates and regularity II, Math. Scand. 13 (1963), pp. 47-69. Zbl0131.09505 MR188616 · Zbl 0131.09505 · eudml:165850
[14] R. WEINSTOCK, Calculus of Variations, McGraw-Hill, New York, 1952. Zbl0049.19503 · Zbl 0049.19503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.