×

zbMATH — the first resource for mathematics

Quantum and classical integrable sine-Gordon model with defect. (English) Zbl 1219.81189
Summary: Defects which are predominant in a realistic model, usually spoil its integrability or solvability. We on the other hand show the exact integrability of a known sine-Gordon field model with a defect (DSG), at the classical as well as at the quantum level based on the Yang-Baxter equation. We find the associated classical and quantum \(R\)-matrices and the underlying q-algebraic structures, analyzing the exact lattice regularized model. We derive algorithmically all higher conserved quantities \(C_n\), \(n=1,2,\dots\), of this integrable DSG model, focusing explicitly on the contribution of the defect point to each \(C_n\). The bridging condition across the defect, defined through the Bäcklund transformation is found to induce creation or annihilation of a soliton by the defect point or its preservation with a phase shift.

MSC:
81T10 Model quantum field theories
81R12 Groups and algebras in quantum theory and relations with integrable systems
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Delfino, G.; Mussardo, G.; Simnetti, P.; Delfino, G.; Mussardo, G.; Simnetti, P.; Konik, R.; LeClair, A.; Seleur, H.; Seleur, H.; Corrigan, E.; Zambon, C.; Bowcock, P.; Corrigan, E.; Zambon, C.; Corrigan, E.; Zambon, C., On purely transmitting defects in affine Toda field theory, Nucl. phys. B, Phys. lett. B, Nucl. phys. B, Nonlinearity, Jhep, 0401, 056, (2004)
[2] Corrigan, E.; Zambon, C.; Bowcock, P.; Corrigan, E.; Zambon, C., J. phys. A, Int. J. mod. phys. A, 19, Suppl., 82, (2004)
[3] Kundu, A., Phys. rev. lett., 99, 154101, (2007)
[4] Goldobin, E.; Susanto, H.; van Gils, S.A., Phys. rev. lett., Phys. rev. B, 69, 092507, (2004)
[5] Salerno, M.; Sen, D.; Lal, S.; Bishop, A.R.; Parmentier, R.D.; McLaughlin, D.W.; Scott, A.C., Solitons in action, Phys. rev. A, Eur. phys. lett., 52, 337, (1978), Academic Press New York, (Chapter 9, p. 186)
[6] Bowcock, P.; Corrigan, E.; Zambon, C., Jhep, 0508, 023, (2005)
[7] Faddeev, L.D.; Takhtajan, L.A., Hamiltonian methods in the theory of solitons, (1989), Springer-Verlag · Zbl 1327.39013
[8] Novikov, S.; Ablowitz, M.; Segur, H.; Hirota, R., The direct method in soliton theory, (2004), Cambridge Univ. Press
[9] Khabibullin, I.T.; Khabibullin, I.T., Theor. math. phys., Theor. math. phys., 86, 28, (1991)
[10] Kundu, A., Phys. rev. lett., 82, 3936, (1999)
[11] Sklyanin, E.K.; Takhtajan, L.A.; Faddeev, L.D., Theor. math. phys., 40, 194, (1979)
[12] Faddeev, L.D., Int. J. mod. phys., 10, 1845, (1995)
[13] Izergin, A.G.; Korepin, V.E., Nucl. phys. B, 205, 5, 401, (1982)
[14] Faddeev, L.D., ()
[15] Sklyanin, E.K.; Sklyanin, E.K.; Sklyanin, E.K.; Kuznetsov, V.B.; Sklyanin, E.K.; Salerno, M., Canonicity of Bäcklund transformation: r-matrix approach (II), J. phys. A, 33, 171, (2000), arXiv: · Zbl 0976.37042
[16] A. Kundu, in preparation
[17] Caudrelier, V., On the systematic approach to defects in classical integrable field theory · Zbl 1166.70017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.