zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. (English) Zbl 1216.11075
Summary: The two-fold aim of the paper is to unify and generalize on the one hand the double integrals of Beukers for $\zeta (2)$ and $\zeta (3)$, and of the second author for Euler’s constant $\gamma$ and its alternating analog $\ln (4/\pi)$, and on the other hand the infinite products of the first author for $e$, of the second author for $\pi$, and of J. Ser for $e^\gamma$. We obtain new double integral and infinite product representations of many classical constants, as well as a generalization to Lerch’s transcendent of Hadjicostas’s double integral formula for the Riemann zeta function, and logarithmic series for the digamma and Euler beta functions. The main tools are analytic continuations of Lerch’s function, including Hasse’s series. We also use Ramanujan’s polylogarithm formula for the sum of a particular series involving harmonic numbers, and his relations between certain dilogarithm values.

11M06$\zeta (s)$ and $L(s, \chi)$
11M35Hurwitz and Lerch zeta functions
11Y60Evaluation of constants
33B15Gamma, beta and polygamma functions
33B30Higher logarithm functions
Full Text: DOI arXiv
[1] Bailey, D.H., Borwein, P., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66, 903--913 (1997) · Zbl 0879.11073 · doi:10.1090/S0025-5718-97-00856-9
[2] Bateman, H., Erdelyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)
[3] Berndt, B.C.: Ramanujan’s Notebooks, Parts I and IV. Springer, New York (1985, 1994) · Zbl 0555.10001
[4] Beukers, F.: A note on the irrationality of {$\zeta$}(2) and {$\zeta$}(3). Bull. Lond. Math. Soc. 11, 268--272 (1979) · Zbl 0421.10023 · doi:10.1112/blms/11.3.268
[5] Chapman, R.: A proof of Hadjicostas’s conjecture. Preprint; available at http://arXiv.org/abs/math/0405478 (2004)
[6] Emery, M.: On a multiple harmonic power series. Preprint; available at http://arxiv.org/abs/math/0411267v2 (2004)
[7] Finch, S.: Mathematical Constants. Cambridge University Press, Cambridge (2003) · Zbl 1054.00001
[8] Goldschmidt, C., Martin, J.B.: Random recursive trees and the Bolthausen-Sznitman coalescent. Electr. J. Probab. 10, 718--745 (2005) · Zbl 1109.60060
[9] Hadjicostas, P.: Some generalizations of Beukers’ integrals. Kyungpook Math. J. 42, 399--416 (2002) · Zbl 1047.11081
[10] Hadjicostas, P.: A conjecture-generalization of Sondow’s formula. Preprint; available at http://arXiv.org/abs/math/0405423 (2004)
[11] Hadjicostas, P.: Personal communication (1 June 2004)
[12] Hasse, H.: Ein Summierungsverfahren für die Riemannsche {$\zeta$}-Reihe. Math. Z. 32, 458--464 (1930) · Zbl 56.0894.03 · doi:10.1007/BF01194645
[13] Lewin, L.: Polylogarithms and Associated Functions. Elsevier, New York (1981) · Zbl 0465.33001
[14] Lewin, L. (ed.): Structural Properties of Polylogarithms. Mathematical Surveys and Monographs, vol. 37. American Mathematical Society, Providence (1991) · Zbl 0745.33009
[15] Milnor, J.: On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseign. Math. 29, 281--322 (1983) · Zbl 0557.10031
[16] Ramanujan, S.: Collected Papers of Srinivasa Ramanujan. Hardy, G.H., et al. (eds.) AMS/Chelsea, Providence (2000) · Zbl 1110.11001
[17] Ser, J.: Sur une expression de la function {$\zeta$}(s) de Riemann. C. R. Acad. Sci. Paris Sér. I Math. 182, 1075--1077 (1926) · Zbl 52.0338.02
[18] Somos, M.: Several constants related to quadratic recurrences. Unpublished note (1999)
[19] Sondow, J.: Analytic continuation of Riemann’s zeta function and values at negative integers via Euler’s transformation of series. Proc. Am. Math. Soc. 120, 421--424 (1994) · Zbl 0796.11033
[20] Sondow, J.: Criteria for irrationality of Euler’s constant. Proc. Am. Math. Soc. 131, 3335--3344 (2003) · Zbl 1113.11040 · doi:10.1090/S0002-9939-03-07081-3
[21] Sondow, J.: An infinite product for e {$\gamma$} via hypergeometric formulas for Euler’s constant {$\gamma$}. Preprint; available at http://arXiv.org/abs/math/0306008 (2003)
[22] Sondow, J.: Double integrals for Euler’s constant and ln (4/{$\pi$}) and an analog of Hadjicostas’s formula. Am. Math. Mon. 112, 61--65 (2005) · Zbl 1138.11356 · doi:10.2307/30037385
[23] Sondow, J.: A faster product for {$\pi$} and a new integral for ln ({$\pi$}/2). Am. Math. Mon. 112, 729--734 (2005) · Zbl 1159.11328 · doi:10.2307/30037575
[24] Spanier, J., Oldham, K.B.: An Atlas of Functions. Hemisphere, New York (1987) · Zbl 0618.65007
[25] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1996) · Zbl 0951.30002