zbMATH — the first resource for mathematics

Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. (English) Zbl 1216.11075
Summary: The two-fold aim of the paper is to unify and generalize on the one hand the double integrals of Beukers for \(\zeta (2)\) and \(\zeta (3)\), and of the second author for Euler’s constant \(\gamma\) and its alternating analog \(\ln (4/\pi)\), and on the other hand the infinite products of the first author for \(e\), of the second author for \(\pi\), and of J. Ser for \(e^\gamma\). We obtain new double integral and infinite product representations of many classical constants, as well as a generalization to Lerch’s transcendent of Hadjicostas’s double integral formula for the Riemann zeta function, and logarithmic series for the digamma and Euler beta functions. The main tools are analytic continuations of Lerch’s function, including Hasse’s series. We also use Ramanujan’s polylogarithm formula for the sum of a particular series involving harmonic numbers, and his relations between certain dilogarithm values.

11M06 \(\zeta (s)\) and \(L(s, \chi)\)
11M35 Hurwitz and Lerch zeta functions
11Y60 Evaluation of number-theoretic constants
33B15 Gamma, beta and polygamma functions
33B30 Higher logarithm functions
Full Text: DOI arXiv
[1] Bailey, D.H., Borwein, P., Plouffe, S.: On the rapid computation of various polylogarithmic constants. Math. Comput. 66, 903–913 (1997) · Zbl 0879.11073
[2] Bateman, H., Erdelyi, A.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)
[3] Berndt, B.C.: Ramanujan’s Notebooks, Parts I and IV. Springer, New York (1985, 1994) · Zbl 0555.10001
[4] Beukers, F.: A note on the irrationality of {\(\zeta\)}(2) and {\(\zeta\)}(3). Bull. Lond. Math. Soc. 11, 268–272 (1979) · Zbl 0421.10023
[5] Chapman, R.: A proof of Hadjicostas’s conjecture. Preprint; available at http://arXiv.org/abs/math/0405478 (2004)
[6] Emery, M.: On a multiple harmonic power series. Preprint; available at http://arxiv.org/abs/math/0411267v2 (2004)
[7] Finch, S.: Mathematical Constants. Cambridge University Press, Cambridge (2003) · Zbl 1054.00001
[8] Goldschmidt, C., Martin, J.B.: Random recursive trees and the Bolthausen-Sznitman coalescent. Electr. J. Probab. 10, 718–745 (2005) · Zbl 1109.60060
[9] Hadjicostas, P.: Some generalizations of Beukers’ integrals. Kyungpook Math. J. 42, 399–416 (2002) · Zbl 1047.11081
[10] Hadjicostas, P.: A conjecture-generalization of Sondow’s formula. Preprint; available at http://arXiv.org/abs/math/0405423 (2004)
[11] Hadjicostas, P.: Personal communication (1 June 2004)
[12] Hasse, H.: Ein Summierungsverfahren für die Riemannsche {\(\zeta\)}-Reihe. Math. Z. 32, 458–464 (1930) · JFM 56.0894.03
[13] Lewin, L.: Polylogarithms and Associated Functions. Elsevier, New York (1981) · Zbl 0465.33001
[14] Lewin, L. (ed.): Structural Properties of Polylogarithms. Mathematical Surveys and Monographs, vol. 37. American Mathematical Society, Providence (1991) · Zbl 0745.33009
[15] Milnor, J.: On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseign. Math. 29, 281–322 (1983) · Zbl 0557.10031
[16] Ramanujan, S.: Collected Papers of Srinivasa Ramanujan. Hardy, G.H., et al. (eds.) AMS/Chelsea, Providence (2000) · Zbl 1110.11001
[17] Ser, J.: Sur une expression de la function {\(\zeta\)}(s) de Riemann. C. R. Acad. Sci. Paris Sér. I Math. 182, 1075–1077 (1926) · JFM 52.0338.02
[18] Somos, M.: Several constants related to quadratic recurrences. Unpublished note (1999)
[19] Sondow, J.: Analytic continuation of Riemann’s zeta function and values at negative integers via Euler’s transformation of series. Proc. Am. Math. Soc. 120, 421–424 (1994) · Zbl 0796.11033
[20] Sondow, J.: Criteria for irrationality of Euler’s constant. Proc. Am. Math. Soc. 131, 3335–3344 (2003) · Zbl 1113.11040
[21] Sondow, J.: An infinite product for e {\(\gamma\)} via hypergeometric formulas for Euler’s constant {\(\gamma\)}. Preprint; available at http://arXiv.org/abs/math/0306008 (2003)
[22] Sondow, J.: Double integrals for Euler’s constant and ln (4/{\(\pi\)}) and an analog of Hadjicostas’s formula. Am. Math. Mon. 112, 61–65 (2005) · Zbl 1138.11356
[23] Sondow, J.: A faster product for {\(\pi\)} and a new integral for ln ({\(\pi\)}/2). Am. Math. Mon. 112, 729–734 (2005) · Zbl 1159.11328
[24] Spanier, J., Oldham, K.B.: An Atlas of Functions. Hemisphere, New York (1987) · Zbl 0618.65007
[25] Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1996) · Zbl 0951.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.