zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical methods for a model for compressible miscible displacement in porous media. (English) Zbl 0537.76062
The authors derive a nonlinear parabolic system for single-phase, miscible displacement of one compressible fluid by another in a porous medium under the assumption that no volume change results from the mixing of the components and that a pressure-density relation exists for each component in a form that is independent of mixing implying that fluids are in the liquid state. They analyse two numerical schemes for approximating the solution of a two component system only for concentration of fluid and pressure using a parabolic Galerkin procedure for the concentration equation for both the schemes but a parabolic Galerkin procedure for the first scheme and a parabolic mixed finite element technique for the second numerical scheme for the pressure equation. It is claimed that the two procedures used for the two-component model can easily be generalized to treat an n-component model. The formulations and analysis are new and are of great interest to people working in ’numerical analysis’ and ’petroleum engineering’. [This is an abridged version, the complete review is available on demand.]
Reviewer: H.K.Verma

76S05Flows in porous media; filtration; seepage
76T99Two-phase and multiphase flows
76M99Basic methods in fluid mechanics
76N10Compressible fluids, general
Full Text: DOI