Estimating the Hurst effect and its application in monitoring clinical trials. (English) Zbl 1429.62559

Summary: We use a direct maximum likelihood method in estimating the Hurst coefficient for fractional Brownian motion with a short length of observations. We show that the estimate is asymptotically unbiased and derive an easy to use formula for computing the variance of the estimate. We also investigate the finite sample properties via Monte Carlo simulations. The simulation studies indicate that the theoretical formulas based on large sample arguments can be used when the number of observations is relatively small. A real example for monitoring a clinical trial is used to illustrate and compare various methods.


62P10 Applications of statistics to biology and medical sciences; meta analysis
60G22 Fractional processes, including fractional Brownian motion
62M09 Non-Markovian processes: estimation
Full Text: DOI


[1] Beran, J., Statistics for Long-Memory Processes (1994), Chapman and Hall: Chapman and Hall New York · Zbl 0869.60045
[2] Beran, J., On a class of \(M\)-estimators for Gaussian long-memory models, Biometrika, 81, 755-766 (1994) · Zbl 0812.62089
[3] Beran, J.; Terrin, N., Testing for a change of the long-memory parameter, Biometrika, 83, 627-638 (1996) · Zbl 0866.62055
[4] Brockwell, P. J.; Davis, R. A., Time Series: Theory and Methods (1987), Springer: Springer New York · Zbl 0604.62083
[5] Dahlhaus, R., Efficient parameters estimation for self-similar processes, Ann. Statist., 17, 1749-1766 (1989) · Zbl 0703.62091
[6] Davis, B. R.; Hardy, R. J., Upper bound for type I and type II error rates in conditional power calculation, Commun. Stat. Theory Methods, 19, 3571-3584 (1990)
[7] Davies, R. B.; Harte, D. S., Tests for Hurst effect, Biometrika, 74, 95-101 (1987) · Zbl 0612.62123
[8] DeMets, D. L.; Hardy, R. J.; Friedman, L. F.; Lan, K. K.G., Statistical aspects of early termination in the Beta-Blocker Heart Attack Trial, Control. Clin. Trials, 5, 362-372 (1984)
[9] Digital Equipment Corporation, 1998. DIGITAL Visual Fortran. Maynard, MA.; Digital Equipment Corporation, 1998. DIGITAL Visual Fortran. Maynard, MA.
[10] Duncan, T. E.; Hu, Y.; Pasik-Duncan, B., Stochastic calculus for fractional Brownian motion, I. Theor, SIAM J. Control Optim., 38, 582-612 (2000) · Zbl 0947.60061
[11] Gripenberg, G.; Norros, I., On the prediction of fractional Brownian motion, J. Appl. Probab., 33, 400-410 (1996) · Zbl 0861.60049
[12] Lai, D. J.; Davis, B. R.; Hardy, R. J., Fractional Brownian motion and clinical trials, J. Appl. Statist., 27, 103-108 (2000) · Zbl 0937.62114
[13] Lan, K. K.G.; Wittes, J., The \(B\)-valuea tool for monitoring data, Biometrics, 44, 579-585 (1988)
[14] Mandelbrot, B. B.; Van Ness, J. W., Fractional Brownian motions, fractional noise and applications, SIAM Rev., 10, 422-437 (1968) · Zbl 0179.47801
[15] Mannella, R.; Grigolini, P.; West, B. J., A dynamical approach to fractional Brownian motion, Fractals, 2, 81-94 (1994) · Zbl 1523.60134
[16] Mardia, K. V.; Marshall, R. J., Maximum likelihood estimation of models for residual covariance in spatial regression, Biometrika, 71, 135-146 (1984) · Zbl 0542.62079
[17] Mathsoft, 1999. S-plus 2000. Seattle, WA.; Mathsoft, 1999. S-plus 2000. Seattle, WA.
[18] Mesa, O. J.; Poveda, G., The Hurst effectthe scale of fluctuation approach, Water Resour. Res., 29, 3995-4002 (1993)
[19] Molz, F. J.; Boman, G. K., A fractal-based stochastic interpolation scheme in subsurface hydrology, Water Resour. Res., 29, 3769-3774 (1993)
[20] Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., Numerical Recipes in Fortran: The Art of Scientific Computing (1992), Cambridge University Press: Cambridge University Press New York · Zbl 0778.65002
[21] Schott, J. R., Matrix Analysis for Statistics (1997), Wiley: Wiley New York · Zbl 0872.15002
[22] Seber, G. A.F., Linear Regression Analysis (1997), Wiley: Wiley New York · Zbl 0354.62055
[23] Sweeting, T. J., Uniform asymptotic normality of the maximum likelihood estimator, Ann. Statist., 8, 1375-1381 (1980) · Zbl 0447.62041
[24] Visual Numerics, 1994. IMSL Library. Houston, TX.; Visual Numerics, 1994. IMSL Library. Houston, TX.
[25] Wallinger, W.; Taqqu, S.; Leland, W. E.; Wilson, D. V., Self-similarity in high-speed packet trafficanalysis and modeling of ethernet traffic measurements, Statist. Sci., 10, 67-85 (1995) · Zbl 1148.90310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.